Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T02:24:11.894Z Has data issue: false hasContentIssue false

Genetic heterogeneity in cardiovascular disease across ancestries: Insights for mechanisms and therapeutic intervention

Published online by Cambridge University Press:  10 January 2023

Opeyemi Soremekun
Affiliation:
The African Computational Genomics (TACG) Research Group, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
Marie-Joe Dib
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK British Heart Foundation Centre of Excellence, Imperial College London, London, UK
Skanda Rajasundaram
Affiliation:
Centre for Evidence-Based Medicine, University of Oxford, Oxford, UK Faculty of Medicine, Imperial College London, London, UK
Segun Fatumo
Affiliation:
The African Computational Genomics (TACG) Research Group, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda Department of Non-Communicable Disease Epidemiology (NCDE), London School of Hygiene and Tropical Medicine, London, UK
Dipender Gill*
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK British Heart Foundation Centre of Excellence, Imperial College London, London, UK
*
Author for correspondence: Dipender Gill, E-mail: dipender.gill@imperial.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Cardiovascular diseases (CVDs) are complex in their aetiology, arising due to a combination of genetics, lifestyle and environmental factors. By nature of this complexity, different CVDs vary in their molecular mechanisms, clinical presentation and progression. Although extensive efforts are being made to develop novel therapeutics for CVDs, genetic heterogeneity is often overlooked in the development process. By considering molecular mechanisms at an individual and ancestral level, a richer understanding of the influence of environmental and lifestyle factors can be gained and more refined therapeutic interventions can be developed. It is therefore expedient to understand the molecular and clinical heterogeneity in CVDs that exists across different populations. In this review, we highlight how the mechanisms underlying CVDs vary across diverse population ancestry groups due to genetic heterogeneity. We then discuss how such genetic heterogeneity is being leveraged to inform therapeutic interventions and personalised medicine, highlighting examples across the CVD spectrum. Finally, we present an overview of how polygenic risk scores and Mendelian randomisation can foster more robust insight into disease mechanisms and therapeutic intervention in diverse populations. Fulfilment of the vision of precision medicine requires more exhaustive leveraging of the genetic variability across diverse ancestry populations to improve our understanding of disease onset, progression and response to therapeutic intervention.

Topics structure

Type
Review
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Impact statement

This review discusses how the genetic basis of cardiovascular disease (CVD) can differ across different ancestries. It focuses on common CVDs such as coronary artery disease (CAD), stroke and their modifiable risk factors (body mass index, type 2 diabetes mellitus, high cholesterol and high blood pressure). It describes how genetic differences, or heterogeneity, can lead to different molecular mechanisms driving CVD across different ancestries. It then discusses how such heterogeneity could be used to improve the early diagnosis of CVD and inform the development of new CVD therapies. For instance, disease mechanisms potentially independent of atherosclerosis may drive CAD in East Asian populations, whereas certain molecular mediators may represent therapeutic targets for stroke that are specific to African ancestry individuals. The review provides insight for researchers, clinicians, funders and healthcare policymakers to understand the importance of genetic heterogeneity across ancestries in the prevention, prediction and treatment of CVD. It highlights instances of genetic ancestry influencing an individual’s response to cardiovascular medication and argues that the practice of precision medicine requires a greater understanding of such influences. Although focused on CVD, the content will pertain to many other disease areas and will be of interest to anyone involved in the application of genomics to clinical medicine.

Introduction

Over the last decade, the field of genetics has rapidly advanced and contributed to understanding of pathogenic mechanisms underlying rare and complex diseases (Gurdasani et al., Reference Gurdasani, Barroso, Zeggini and Sandhu2019). Genetics is also increasingly leveraged to successfully identify novel drug targets (Ochoa et al., Reference Ochoa, Karim, Ghoussaini, Hulcoop, McDonagh and Dunham2022). Genome-wide association studies (GWASs) and next-generation sequencing methods have been successful in identifying risk loci for disease. However, most of these studies have predominantly been conducted in populations of European ancestry (Fatumo et al., Reference Fatumo, Chikowore, Choudhury, Ayub, Martin and Kuchenbaecker2022). In fact, as of 2021, 86% of genomic studies have been carried out in individuals of European descent (Fatumo et al., Reference Fatumo, Chikowore, Choudhury, Ayub, Martin and Kuchenbaecker2022). Disparities in health status and outcomes between different ancestry populations are increasing, and a lack of diversity in genetic research may exacerbate inequities (Bentley et al., Reference Bentley, Callier and Rotimi2017). Leveraging genetic data from ancestrally diverse populations can provide deep insights into specific pathogenic variants that differ across population groups (Bentley et al., Reference Bentley, Callier and Rotimi2017; Martin et al., Reference Martin, Gignoux, Walters, Wojcik, Neale, Gravel, Daly, Bustamante and Kenny2017; Atutornu et al., Reference Atutornu, Milne, Costa, Patch and Middleton2022).

The genetic basis of disease is classified into Mendelian disorders and complex polygenic diseases. Mendelian diseases are caused by single gene alterations, whereas complex diseases are caused by several genes, each of which play a small, additive role in increasing disease risk. Irrespective of the relative contribution of genetics and environment to traits and diseases, ‘heterogeneity’ is observed in disease outcomes and plays a role in their mechanism (Bomprezzi et al., Reference Bomprezzi, Kovanen and Martin2003). Woodward et al. (Reference Woodward, Urbanowicz, Naj and Moore2022) define heterogeneity as disparities that exist at different taxonomic levels such as cells, tissues and phenotypes. Some of these disparities could either be directly accounted for, and are measurable, whereas others are not (Woodward et al., Reference Woodward, Urbanowicz, Naj and Moore2022). In population health, heterogeneity is an inevitable phenomenon that pertains to numerous epidemiological concepts, including disease aetiology, missing heritability and treatment resistance (Woodward et al., Reference Woodward, Urbanowicz, Naj and Moore2022). It is important to address this to facilitate tailored disease interventions in multi-ancestry and admixed populations.

In this review, we highlight findings from genetic research of cardiovascular disease (CVD) outcomes: coronary artery disease (CAD) and stroke, and their modifiable risk factors (body mass index [BMI], type 2 diabetes mellitus [T2DM], lipids and hypertension in diverse ancestry population groups). These risk factors were prioritised on the basis of their significant contribution to CVD burden across diverse populations (Yusuf et al., Reference Yusuf, Joseph, Rangarajan, Islam, Mente, Hystad, Brauer, Kutty, Gupta, Wielgosz, AlHabib, Dans, Lopez-Jaramillo, Avezum, Lanas, Oguz, Kruger, Diaz, Yusoff, Mony, Chifamba, Yeates, Kelishadi, Yusufali, Khatib, Rahman, Zatonska, Iqbal, Wei, Bo, Rosengren, Kaur, Mohan, Lear, Teo, Leong, O’Donnell, McKee and Dagenais2020; Fawzy and Lip, Reference Fawzy and Lip2021; Shah et al., Reference Shah, Lee, Pérez, Campbell, Astengo, Logue, Gallacher, Katikireddi, Bing, Alam, Anand, Sudlow, Fischbacher, Lewsey, Perel, Newby, Mills and McAllister2021; Wang et al., Reference Wang, Zhao, Yu, Zeng, Xu, Xu, Hu, Chen, Su, Mu, Chen, Tang, Yan, Qin, Wan, Gao, Wang, Shen, Luo, Qin, Chen, Huo, Li, Ye, Zhang, Liu, Wang, Wu, Yang, Deng, Zhao, Xu, Li, Chen, Wang, Ning, Bi, Shi, Lu and Wang2021). Rather than systematically search through all previously published work in this area, we instead prioritise studies that highlight the insights that can be gained by an appreciation of genetic heterogeneity across populations of diverse ancestry groups. Such understanding has the potential to improve our overall ability to assess disease risk, and thus serves as a conduit between precision medicine and public health for improving the well-being of individuals and populations (Wehby et al., Reference Wehby, Domingue and Wolinsky2018; Roberts et al., Reference Roberts, Fohner, Landry, Olstad, Smit, Turbitt and Allen2021) (Figure 1).

Figure 1. Precision medicine approaches in cardiovascular disease (CVD) and challenges to overcome. Multi-ancestry genetic studies play a pivotal role in advancing precision medicine. Comparisons of ancestry-specific and trans-ancestry GWAS findings provide insights into CVD aetiology and its heterogeneity. Secondary analyses of GWAS data, notably using Mendelian randomisation methods, provide additional insights into causal relationships between cardiometabolic risk factors and CVD outcomes. This allows for risk factor prioritisation and optimised risk stratification in diverse ancestry population groups. Integrating ancestry-specific GWAS associations in polygenic risk scores allows for improved predictability of CVD outcomes. Together these approaches contribute to the improved primary prevention, diagnosis and prognosis and targeted therapeutics of CVD. Figure created using BioRender.com (2019).

Genetic heterogeneity

Genetic heterogeneity can be defined as genetic variation that results in the same (or similar) phenotype(s) (Woodward et al., Reference Woodward, Urbanowicz, Naj and Moore2022), where a phenotype is an organism’s set of observable characteristics or traits. Genetic heterogeneity can contribute substantially to complex disease phenotypes. Two different types of genetic heterogeneity are well described in the literature: allelic heterogeneity, which arises when different alleles at the same genetic locus result in the same phenotype, and locus heterogeneity, which arises when mutations in different loci lead to the same phenotype (Scriver, Reference Scriver2006; Woodward et al., Reference Woodward, Urbanowicz, Naj and Moore2022).

Genetic heterogeneity and ancestral differences in CVD outcome and risk factors

Much attention is currently being paid to how genetic factors may contribute to disparities in health and disease, although the limitations of commonly used ethnic descriptors in explaining the genetic structures in diverse populations have been discussed (Wilson et al., Reference Wilson, Weale, Smith, Gratrix, Fletcher, Thomas, Bradman and Goldstein2001). This begs the question of how race is defined within the scope of genetics. In population studies, the terms ‘race’ and ‘ethnicity’, which take into account cultural, linguistic, biological and geographical aspects, are frequently used interchangeably (Sankar and Cho, Reference Sankar and Cho2002), and they also allude to an individual’s phenotypic features (Peterson et al., Reference Peterson, Kuchenbaecker, Walters, Chen, Popejoy, Periyasamy, Lam, Iyegbe, Strawbridge, Brick, Carey, Martin, Meyers, Su, Chen, Edwards, Kalungi, Koen, Majara, Schwarz, Smoller, Stahl, Sullivan, Vassos, Mowry, Prieto, Cuellar-Barboza, Bigdeli, Edenberg, Huang and Duncan2019). Ancestry connotes an individual genetic ancestry as evidenced by the DNA passed down and through generations in a specific group (Peterson et al., Reference Peterson, Kuchenbaecker, Walters, Chen, Popejoy, Periyasamy, Lam, Iyegbe, Strawbridge, Brick, Carey, Martin, Meyers, Su, Chen, Edwards, Kalungi, Koen, Majara, Schwarz, Smoller, Stahl, Sullivan, Vassos, Mowry, Prieto, Cuellar-Barboza, Bigdeli, Edenberg, Huang and Duncan2019).

We highlight below current progress in the genetic study of CVD aetiology for diverse ancestry groups. We prioritised CAD, stroke and modifiable risk factors (BMI, T2DM, lipids and hypertension) in selected ancestry groups. While other CVD endpoints and modifiable risk factors, these were selected according to their burden and contributions to CVD (Wehby et al., Reference Wehby, Domingue and Wolinsky2018; Roth et al., Reference Roth, Mensah, Johnson, Addolorato, Ammirati, Baddour, Barengo, Beaton, Benjamin, Benziger, Bonny, Brauer, Brodmann, Cahill, Carapetis, Catapano, Chugh, Cooper, Coresh, Criqui, DeCleene, Eagle, Emmons-Bell, Feigin, Fernández-Solà, Fowkes, Gakidou, Grundy, He, Howard, Hu, Inker, Karthikeyan, Kassebaum, Koroshetz, Lavie, Lloyd-Jones, Lu, Mirijello, Temesgen, Mokdad, Moran, Muntner, Narula, Neal, Ntsekhe, Moraes, Otto, Owolabi, Pratt, Rajagopalan, Reitsma, Ribeiro, Rigotti, Rodgers, Sable, Shakil, Sliwa-Hahnle, Stark, Sundström, Timpel, Tleyjeh, Valgimigli, Vos, Whelton, Yacoub, Zuhlke, Murray and Fuster2020).

Coronary artery disease

CAD is a common polygenic disease, and is a leading cause of morbidity and mortality globally (GBD 2015 Mortality and Causes of Death Collaborators, 2016). CAD typically causes myocardial ischaemia due to narrowing or blockage of the coronary arteries that feed into heart, leading to myocardial infarction. Development of arrhythmia, heart failure and death are also observed consequences of CAD. CAD is known to be highly heritable (Marenberg et al., Reference Marenberg, Risch, Berkman, Floderus and de Faire1994) with more than 160 CAD susceptibility loci described (Nikpay et al., Reference Nikpay, Goel, Won, Hall, Willenborg, Kanoni, Saleheen, Kyriakou, Nelson, Hopewell, Webb, Zeng, Dehghan, Alver, Armasu, Auro, Bjonnes, Chasman, Chen, Ford, Franceschini, Gieger, Grace, Gustafsson, Huang, Hwang, Kim, Kleber, Lau, Lu, Lu, Lyytikäinen, Mihailov, Morrison, Pervjakova, Qu, Rose, Salfati, Saxena, Scholz, Smith, Tikkanen, Uitterlinden, Yang, Zhang, Zhao, Andrade, Vries, Zuydam, Anand, Bertram, Beutner, Dedoussis, Frossard, Gauguier, Goodall, Gottesman, Haber, Han, Huang, Jalilzadeh, Kessler, König, Lannfelt, Lieb, Lind, Lindgren, Lokki, Magnusson, Mallick, Mehra, Meitinger, Memon, Morris, Nieminen, Pedersen, Peters, Rallidis, Rasheed, Samuel, Shah, Sinisalo, Stirrups, Trompet, Wang, Zaman, Ardissino, Boerwinkle, Borecki, Bottinger, Buring, Chambers, Collins, Cupples, Danesh, Demuth, Elosua, Epstein, Esko, Feitosa, Franco, Franzosi, Granger, Gu, Gudnason, Hall, Hamsten, Harris, Hazen, Hengstenberg, Hofman, Ingelsson, Iribarren, Jukema, Karhunen, Kim, Kooner, Kullo, Lehtimäki, Loos, Melander, Metspalu, März, Palmer, Perola, Quertermous, Rader, Ridker, Ripatti, Roberts, Salomaa, Sanghera, Schwartz, Seedorf, Stewart, Stott, Thiery, Zalloua, O’Donnell, Reilly, Assimes, Thompson, Erdmann, Clarke, Watkins, Kathiresan, McPherson, Deloukas, Schunkert, Samani and Farrall2015; van der Harst and Verweij, Reference van der Harst and Verweij2018). Advances in the field of genetics have not only revealed novel CAD disease pathways, but have also enabled the quantification of individual genetic risk and the development of new therapeutic agents (Miyazawa and Ito, Reference Miyazawa and Ito2021). In a recent GWAS for CAD (Koyama et al., Reference Koyama, Ito, Terao, Akiyama, Horikoshi, Momozawa, Matsunaga, Ieki, Ozaki, Onouchi, Takahashi, Nomura, Morita, Akazawa, Kim, Seo, Higasa, Iwasaki, Yamaji, Sawada, Tsugane, Koyama, Ikezaki, Takashima, Tanaka, Arisawa, Kuriki, Naito, Wakai, Suna, Sakata, Sato, Hori, Sakata, Matsuda, Murakami, Aburatani, Kubo, Matsuda, Kamatani and Komuro2020), Koyama et al. used the WGS data of 4,930 Japanese individuals and created a reference panel containing disease-specific haplotype (physical grouping of genomic variants usually inherited together) information for 1,782 patients with CAD for imputation. They identified an association between CAD and a missense mutation in RNF213, which has been reported as a causative gene of Moyamoya disease. Here, the genetic investigation of disease via WGS and GWAS efforts in a Japanese population revealed a common genetic risk factor between CAD and Moyamoya disease, providing novel mechanistic insight into CAD. More specifically, this offered insight into the pathological features of Moyamoya disease in relation to atherosclerosis (Houkin et al., Reference Houkin, Ito, Sugiyama, Shichinohe, Nakayama, Kazumata and Kuroda2012). Findings from the Japanese populations have provided evidence of disease mechanisms for CAD potentially separate to that of atherosclerosis, thereby highlighting the heterogeneity in disease mechanisms underlying CAD. It remains to be studied whether the mechanism is specific to East Asian populations or if this translates to other ancestries.

Stroke

Stroke is another leading cause of disability and death worldwide, exerting a significant strain on healthcare systems (GBD 2017 Causes of Death Collaborators, 2018). There are considerable disparities in stroke incidence, subtype and prognosis between those of European and African ancestries, with established stroke risk facts explaining only about half of the variation (Prapiadou et al., Reference Prapiadou, Demel and Hyacinth2021). In some studies conducted in the United States, African ancestry individuals aged between 45 and 64 years have a threefold higher risk of stroke compared with non-Africans (although this difference is attenuated by age 85) (Rosamond et al., Reference Rosamond, Folsom, Chambless, Wang, McGovern, Howard, Copper and Shahar1999; G. Howard et al., Reference Howard, Cushman, Kissela, Kleindorfer, McClure, Safford, Rhodes, Soliman, Moy, Judd and Howard2011; V. J. Howard et al., Reference Howard, Kleindorfer, Judd, McClure, Safford, Rhodes, Cushman, Moy, Soliman, Kissela and Howard2011). The disparity observed in this study is ascribed to an increased incidence in African ancestry individuals rather than decreased survival. While many studies have documented interracial differences in the incidence of stroke, the reasons for these differences have not been fully explained, and therefore the identification of ancestry-specific risk factors is important for the treatment and management of stroke. In a study by Harriott et al. (Reference Harriott, Heckman, Rayaprolu, Soto-Ortolaza, Diehl, Kanekiyo, Liu, Bu, Malik, Cole, Meschia and Ross2015), the rs11172113 variant, which mapped on to the LRP1 gene, was associated with stroke among African Americans, but this result failed to replicate in a non-Hispanic White cohort. LRP1 plays a key role in the liver by removing atherogenic lipoproteins and other proatherogenic ligands from circulation (Chen et al., Reference Chen, Su, Pi, Hu and Mao2021). Anti-P3 (Gly1127-Cys1140) antibodies (Abs) that block the LRP1 (CR9) domain have been demonstrated to stop LRP1-mediated aggregated-LDL (aggLDL) internalisation and aggLDL-induced LRP1 upregulation, preventing foam cell formation in human macrophages and vascular smooth muscle cells (Costales et al., Reference Costales, Fuentes-Prior, Castellano, Revuelta-Lopez, Corral-Rodríguez, Nasarre, Badimon and Llorente-Cortes2015; Bornachea et al., Reference Bornachea, Benitez-Amaro, Vea, Nasarre, de Gonzalo-Calvo, Escola-Gil, Cedo, Iborra, Martínez-Martínez, Juarez, Camara, Espinet, Borrell-Pages, Badimon, Castell and Llorente-Cortés2020). The strong link between LRP1 and stroke via the atherosclerotic pathway renders LRP1 as a potential therapeutic target for stroke in this population. The multi-ethnic Stroke Prevention in Young Women case–control research discovered two SNPs in the NOS3 gene that were related to ischemic stroke in African ancestry women but not in European women (T. D. Howard et al., Reference Howard, Giles, Xu, Wozniak, Malarcher, Lange, Macko, Basehore, Meyers, Cole and Kittner2005). NOS has also been reported to be associated with stroke in a Chinese population (Hou et al., Reference Hou, Osei-Hyiaman, Yu, Ren, Zhang, Wang and Harada2001; Berger et al., Reference Berger, Stögbauer, Stoll, Wellmann, Huge, Cheng, Kessler, John, Assmann, Ringelstein and Funke2007) without been replicated in a Japanese population (Yahashi et al., Reference Yahashi, Kario, Shimada and Matsuo1998). NOS3 catalyses the production of nitric oxide, which is responsible for mediating vascular relaxation in response to vasoactive substances and stress (Förstermann and Sessa, Reference Förstermann and Sessa2012). NOS3 inhibits platelet aggregation and suppresses smooth muscle proliferation. Therefore, NOS3’s properties make it a biologically plausible candidate to investigate as a susceptibility gene in ischemic stroke for particular population groups.

BMI

Obesity has been linked to an increased risk of noncommunicable diseases, including T2DM (Boles et al., Reference Boles, Kandimalla and Reddy2017) and CVD (Ortega et al., Reference Ortega, Lavie and Blair2016), and is used as a proxy for obesity. Genetics and environmental factors are known to influence BMI in individuals (Bhaskaran et al., Reference Bhaskaran, Douglas, Forbes, dos-Santos-Silva, Leon and Smeeth2014). Elevated BMI predisposes individuals to numerous diseases (Bhaskaran et al., Reference Bhaskaran, Douglas, Forbes, dos-Santos-Silva, Leon and Smeeth2014; Benjamin et al., Reference Benjamin, Blaha, Chiuve, Cushman, Das, Deo, de Ferranti, Floyd, Fornage, Gillespie, Isasi, Jiménez, Jordan, Judd, Lackland, Lichtman, Lisabeth, Liu, Longenecker, Mackey, Matsushita, Mozaffarian, Mussolino, Nasir, Neumar, Palaniappan, Pandey, Thiagarajan, Reeves, Ritchey, Rodriguez, Roth, Rosamond, Sasson, Towfighi, Tsao, Turner, Virani, Voeks, Willey, Wilkins, Wu, Alger, Wong and Muntner2017), and BMI heritability is estimated to be approximately 40% (Hemani et al., Reference Hemani, Yang, Vinkhuyzen, Powell, Willemsen, Hottenga, Abdellaoui, Mangino, Valdes, Medland, Madden, Heath, Henders, Nyholt, Geus, Magnusson, Ingelsson, Montgomery, Spector, Boomsma, Pedersen, Martin and Visscher2013; Yang et al., Reference Yang, Bakshi, Zhu, Hemani, Vinkhuyzen, Lee, Robinson, Perry, Nolte, Vliet-Ostaptchouk, Snieder, Esko, Milani, Mägi, Metspalu, Hamsten, Magnusson, Pedersen, Ingelsson, Soranzo, Keller, Wray, Goddard, Visscher and Study2015). GWAS of BMI has identified up to 426 BMI loci (Liu et al., Reference Liu, Liu, Wang, Dina, Yan, Liu, Levy, Papasian, Drees, Hamilton, Meyre, Delplanque, Pei, Zhang, Recker, Froguel and Deng2008; Thorleifsson et al., Reference Thorleifsson, Walters, Gudbjartsson, Steinthorsdottir, Sulem, Helgadottir, Styrkarsdottir, Gretarsdottir, Thorlacius, Jonsdottir, Jonsdottir, Olafsdottir, Olafsdottir, Jonsson, Jonsson, Borch-Johnsen, Hansen, Andersen, Jorgensen, Lauritzen, Aben, Verbeek, Roeleveld, Kampman, Yanek, Becker, Tryggvadottir, Rafnar, Becker, Gulcher, Kiemeney, Pedersen, Kong, Thorsteinsdottir and Stefansson2009; Willer et al., Reference Willer, Speliotes, Loos, Li, Lindgren, Heid, Berndt, Elliott, Jackson, Lamina, Lettre, Lim, Lyon, McCarroll, Papadakis, Qi, Randall, Roccasecca, Sanna, Scheet, Weedon, Wheeler, Zhao, Jacobs, Prokopenko, Soranzo, Tanaka, Timpson, Almgren, Bennett, Bergman, Bingham, Bonnycastle, Brown, Burtt, Chines, Coin, Collins, Connell, Cooper, Smith, Dennison, Deodhar, Elliott, Erdos, Estrada, Evans, Gianniny, Gieger, Gillson, Guiducci, Hackett, Hadley, Hall, Havulinna, Hebebrand, Hofman, Isomaa, Jacobs, Johnson, Jousilahti, Jovanovic, Khaw, Kraft, Kuokkanen, Kuusisto, Laitinen, Lakatta, Luan, Luben, Mangino, McArdle, Meitinger, Mulas, Munroe, Narisu, Ness, Northstone, O’Rahilly, Purmann, Rees, Ridderstråle, Ring, Rivadeneira, Ruokonen, Sandhu, Saramies, Scott, Scuteri, Silander, Sims, Song, Stephens, Stevens, Stringham, Tung, Valle, Duijn, Vimaleswaran, Vollenweider, Waeber, Wallace, Watanabe, Waterworth, Watkins, Witteman, Zeggini, Zhai, Zillikens, Altshuler, Caulfield, Chanock, Farooqi, Ferrucci, Guralnik, Hattersley, Hu, Jarvelin, Laakso, Mooser, Ong, Ouwehand, Salomaa, Samani, Spector, Tuomi, Tuomilehto, Uda, Uitterlinden, Wareham, Deloukas, Frayling, Groop, Hayes, Hunter, Mohlke, Peltonen, Schlessinger, Strachan, Wichmann, McCarthy, Boehnke, Barroso, Abecasis and Hirschhorn2009; Speliotes et al., Reference Speliotes, Willer, Berndt, Monda, Thorleifsson, Jackson, Allen, Lindgren, Luan, Mägi, Randall, Vedantam, Winkler, Qi, Workalemahu, Heid, Steinthorsdottir, Stringham, Weedon, Wheeler, Wood, Ferreira, Weyant, Segrè, Estrada, Liang, Nemesh, Park, Gustafsson, Kilpeläinen, Yang, Bouatia-Naji, Esko, Feitosa, Kutalik, Mangino, Raychaudhuri, Scherag, Smith, Welch, Zhao, Aben, Absher, Amin, Dixon, Fisher, Glazer, Goddard, Heard-Costa, Hoesel, Hottenga, Johansson, Johnson, Ketkar, Lamina, Li, Moffatt, Myers, Narisu, Perry, Peters, Preuss, Ripatti, Rivadeneira, Sandholt, Scott, Timpson, Tyrer, Wingerden, Watanabe, White, Wiklund, Barlassina, Chasman, Cooper, Jansson, Lawrence, Pellikka, Prokopenko, Shi, Thiering, Alavere, Alibrandi, Almgren, Arnold, Aspelund, Atwood, Balkau, Balmforth, Bennett, Ben-Shlomo, Bergman, Bergmann, Biebermann, Blakemore, Boes, Bonnycastle, Bornstein, Brown, Buchanan, Busonero, Campbell, Cappuccio, Cavalcanti-Proença, Chen, Chen, Chines, Clarke, Coin, Connell, Day, Heijer, Duan, Ebrahim, Elliott, Elosua, Eiriksdottir, Erdos, Eriksson, Facheris, Felix, Fischer-Posovszky, Folsom, Friedrich, Freimer, Fu, Gaget, Gejman, Geus, Gieger, Gjesing, Goel, Goyette, Grallert, Gräßler, Greenawalt, Groves, Gudnason, Guiducci, Hartikainen, Hassanali, Hall, Havulinna, Hayward, Heath, Hengstenberg, Hicks, Hinney, Hofman, Homuth, Hui, Igl, Iribarren, Isomaa, Jacobs, Jarick, Jewell, John, Jørgensen, Jousilahti, Jula, Kaakinen, Kajantie, Kaplan, Kathiresan, Kettunen, Kinnunen, Knowles, Kolcic, König, Koskinen, Kovacs, Kuusisto, Kraft, Kvaløy, Laitinen, Lantieri, Lanzani, Launer, Lecoeur, Lehtimäki, Lettre, Liu, Lokki, Lorentzon, Luben, Ludwig, Manunta, Marek, Marre, Martin, McArdle, McCarthy, McKnight, Meitinger, Melander, Meyre, Midthjell, Montgomery, Morken, Morris, Mulic, Ngwa, Nelis, Neville, Nyholt, O’Donnell, O’Rahilly, Ong, Oostra, Paré, Parker, Perola, Pichler, Pietiläinen, Platou, Polasek, Pouta, Rafelt, Raitakari, Rayner, Ridderstråle, Rief, Ruokonen, Robertson, Rzehak, Salomaa, Sanders, Sandhu, Sanna, Saramies, Savolainen, Scherag, Schipf, Schreiber, Schunkert, Silander, Sinisalo, Siscovick, Smit, Soranzo, Sovio, Stephens, Surakka, Swift, Tammesoo, Tardif, Teder-Laving, Teslovich, Thompson, Thomson, Tönjes, Tuomi, Meurs, Ommen, Vatin, Viikari, Visvikis-Siest, Vitart, Vogel, Voight, Waite, Wallaschofski, Walters, Widen, Wiegand, Wild, Willemsen, Witte, Witteman, Xu, Zhang, Zgaga, Ziegler, Zitting, Beilby, Farooqi, Hebebrand, Huikuri, James, Kähönen, Levinson, Macciardi, Nieminen, Ohlsson, Palmer, Ridker, Stumvoll, Beckmann, Boeing, Boerwinkle, Boomsma, Caulfield, Chanock, Collins, Cupples, Smith, Erdmann and Froguel2010; Kim et al., Reference Kim, Go, Hu, Hong, Kim, Lee, Hwang, Oh, Kim, Kim, Kim, Hong, Kim, Min, Kim, Zhang, Jia, Okada, Takahashi, Kubo, Tanaka, Kamatani, Matsuda, Park, Oh, Kimm, Kang, Shin, Cho, Kim, Han, Lee and Cho2011; Turcot et al., Reference Turcot, Lu, Highland, Schurmann, Justice, Fine, Bradfield, Esko, Giri, Graff, Guo, Hendricks, Karaderi, Lempradl, Locke, Mahajan, Marouli, Sivapalaratnam, Young, Alfred, Feitosa, Masca, Manning, Medina-Gomez, Mudgal, Ng, Reiner, Vedantam, Willems, Winkler, Abecasis, Aben, Alam, Alharthi, Allison, Amouyel, Asselbergs, Auer, Balkau, Bang, Barroso, Bastarache, Benn, Bergmann, Bielak, Blüher, Boehnke, Boeing, Boerwinkle, Böger, Bork-Jensen, Bots, Bottinger, Bowden, Brandslund, Breen, Brilliant, Broer, Brumat, Burt, Butterworth, Campbell, Cappellani, Carey, Catamo, Caulfield, Chambers, Chasman, Chen, Chowdhury, Christensen, Chu, Cocca, Collins, Cook, Corley, Corominas, Cox, Crosslin, Cuellar-Partida, D’Eustacchio, Danesh, Davies, Bakker, Groot, Mutsert, Deary, Dedoussis, Demerath, Heijer, Hollander, Ruijter, Dennis, Denny, Angelantonio, Drenos, Du, Dubé, Dunning, Easton, Edwards, Ellinghaus, Ellinor, Elliott, Evangelou, Farmaki, Farooqi, Faul, Fauser, Feng, Ferrannini, Ferrieres, Florez, Ford, Fornage, Franco, Franke, Franks, Friedrich, Frikke-Schmidt, Galesloot, Gan, Gandin, Gasparini, Gibson, Giedraitis, Gjesing, Gordon-Larsen, Gorski, Grabe, Grant, Grarup, Griffiths, Grove, Gudnason, Gustafsson, Haessler, Hakonarson, Hammerschlag, Hansen, Harris, Harris, Hattersley, Have, Hayward, He, Heard-Costa, Heath, Heid, Helgeland, Hernesniemi, Hewitt, Holmen, Hovingh, Howson, Hu, Huang, Huffman, Ikram, Ingelsson, Jackson, Jansson, Jarvik, Jensen, Jia, Johansson, Jørgensen, Jørgensen, Jukema, Kahali, Kahn, Kähönen, Kamstrup, Kanoni, Kaprio, Karaleftheri, Kardia, Karpe, Kathiresan, Kee, Kiemeney, Kim, Kitajima, Komulainen, Kooner, Kooperberg, Korhonen, Kovacs, Kuivaniemi, Kutalik, Kuulasmaa, Kuusisto, Laakso, Lakka, Lamparter, Lange, Lange, Langenberg, Larson, Lee, Lehtimäki, Lewis, Li, Li, Li-Gao, Lin, Lin, Lin, Lin, Lind, Lindström, Linneberg, Liu, Liu, Liu, Lo, Lophatananon, Lotery, Loukola, Luan, Lubitz, Lyytikäinen, Männistö, Marenne, Mazul, McCarthy, McKean-Cowdin, Medland, Meidtner, Milani, Mistry, Mitchell, Mohlke, Moilanen, Moitry, Montgomery, Mook-Kanamori, Moore, Mori, Morris, Morris, Müller-Nurasyid, Munroe, Nalls, Narisu, Nelson, Neville, Nielsen, Nikus, Njølstad, Nordestgaard, Nyholt, O’Connel, O’Donoghue, Olde, Ophoff, Owen, Packard, Padmanabhan, Palmer, Palmer, Pasterkamp, Patel, Pattie, Pedersen, Peissig, Peloso, Pennell, Perola, Perry, Perry, Pers, Person, Peters, Petersen, Peyser, Pirie, Polasek, Polderman, Puolijoki, Raitakari, Rasheed, Rauramaa, Reilly, Renström, Rheinberger, Ridker, Rioux, Rivas, Roberts, Robertson, Robino, Rolandsson, Rudan, Ruth, Saleheen, Salomaa, Samani, Sapkota and Sattar2018). Notable allele frequency distribution has been observed in BMI-associated variants which consequently confers ancestral differences in BMI. For example, in a trans-ancestry meta-analysis by Downie et al. (Reference Downie, Dimos, Bien, Hu, Darst, Polfus, Wang, Wojcik, Tao, Raffield, Armstrong, Polikowsky, Below, Correa, Irvin, Rasmussen-Torvik, Carlson, Phillips, Liu, Pankow, Rich, Rotter, Buyske, Matise, North, Avery, Haiman, Loos, Kooperberg, Graff and Highland2022), wide variation of minor allele frequency was seen across populations for sentinel variants ranging from 0.12 to 0.36 for VEGFA locus and 0.10 to 0.37 for PTEN locus. A population specific locus (LRRC37A5P) was found in individuals that self-identify as African Americans (Downie et al., Reference Downie, Dimos, Bien, Hu, Darst, Polfus, Wang, Wojcik, Tao, Raffield, Armstrong, Polikowsky, Below, Correa, Irvin, Rasmussen-Torvik, Carlson, Phillips, Liu, Pankow, Rich, Rotter, Buyske, Matise, North, Avery, Haiman, Loos, Kooperberg, Graff and Highland2022). The identification of these ancestry specific loci underscores the significance of undertaking genetic studies in diverse populations. The metabolic effects of obesity have been linked to the biological activity of adipose tissue in a manner specific to fat distribution, such as visceral and subcutaneous adiposity or fat accumulation, which can vary substantially across populations (Crowther et al., Reference Crowther, Ferris, Ojwang and Rheeder2006).

Type 2 diabetes mellitus

More than 200 genetic variants have been found through GWAS to be associated with T2DM across various populations (Mahajan et al., Reference Mahajan, Taliun, Thurner, Robertson, Torres, Rayner, Payne, Steinthorsdottir, Scott, Grarup, Cook, Schmidt, Wuttke, Sarnowski, Mägi, Nano, Gieger, Trompet, Lecoeur, Preuss, Prins, Guo, Bielak, Below, Bowden, Chambers, Kim, Ng, Petty, Sim, Zhang, Bennett, Bork-Jensen, Brummett, Canouil, Ec, Fischer, Kardia, Kronenberg, Läll, Liu, Locke, Luan, Ntalla, Nylander, Schönherr, Schurmann, Yengo, Bottinger, Brandslund, Christensen, Dedoussis, Florez, Ford, Franco, Frayling, Giedraitis, Hackinger, Hattersley, Herder, Ikram, Ingelsson, Jørgensen, Jørgensen, Kriebel, Kuusisto, Ligthart, Lindgren, Linneberg, Lyssenko, Mamakou, Meitinger, Mohlke, Morris, Nadkarni, Pankow, Peters, Sattar, Stančáková, Strauch, Taylor, Thorand, Thorleifsson, Thorsteinsdottir, Tuomilehto, Witte, Dupuis, Peyser, Zeggini, Loos, Froguel, Ingelsson, Lind, Groop, Laakso, Collins, Jukema, Palmer, Grallert, Metspalu, Dehghan, Köttgen, Abecasis, Meigs, Rotter, Marchini, Pedersen, Hansen, Langenberg, Wareham, Stefansson, Gloyn, Morris, Boehnke and McCarthy2018). Most have small effects on diabetes risk, but a few have larger effects across different ancestral populations. A study has found that allele frequencies for established T2DM susceptibility variants differ significantly across ancestry groups, with African ancestry groups having the highest genetic risk, East Asians and American Indians having the lowest genetic risk and Europeans having an intermediate risk (Klimentidis et al., Reference Klimentidis, Abrams, Wang, Fernandez and Allison2011). Using genome-wide SNP data from the Human Genome Diversity Panel of 938 individuals from 53 populations, Klimentidis et al. (Reference Klimentidis, Abrams, Wang, Fernandez and Allison2011) compared the population differentiation and haplotype pattern of genome-wide significant genes and the rest of the genome. East Asians and sub-Saharan Africans differ the most in terms of differentiation, implying that T2DM-associated genes in these populations have been subject to increased selection pressures. When compared with sub-Saharan Africans and Native Americans, haplotype analysis indicates an excess of obesity loci with signs of recent positive selection among South Asians and Europeans (Klimentidis et al., Reference Klimentidis, Abrams, Wang, Fernandez and Allison2011). The authors of the study suggested that genetic regions around loci driving T2DM have undergone substantial evolutionary changes and selection in the last 100,000 years, most notably in sub-Saharan Africans and East Asians. Therefore, the identification of loci that have undergone this recent selection may be useful in teasing out population-specific risk variants for T2DM treatment. Using a meta-regression model which allows for the description of heterogeneity based on ancestry, environmental factors or study design, Mahajan et al. (Reference Mahajan, Spracklen, Zhang, Ng, Petty, Kitajima, Yu, Rüeger, Speidel, Kim, Horikoshi, Mercader, Taliun, Moon, Kwak, Robertson, Rayner, Loh, Kim, Chiou, Miguel-Escalada, Briotta, Lin, Bragg, Preuss, Takeuchi, Nano, Guo, Lamri, Nakatochi, Scott, Lee, Huerta-Chagoya, Graff, Chai, Parra, Yao, Bielak, Tabara, Hai, Steinthorsdottir, Cook, Kals, Grarup, Schmidt, Pan, Sofer, Wuttke, Sarnowski, Gieger, Nousome, Trompet, Long, Sun, Tong, Chen, Ahmad, Noordam, Lim, Tam, Joo, Chen, Raffield, Lecoeur, Prins, Nicolas, Yanek, Chen, Jensen, Tajuddin, Kabagambe, An, Xiang, Choi, Cade, Tan, Flanagan, Abaitua, Adair, Adeyemo, Aguilar-Salinas, Akiyama, Anand, Bertoni, Bian, Bork-Jensen, Brandslund, Brody, Brummett, Buchanan, Canouil, Chan, Chang, Chee, Chen, Chen, Chen, Chen, Chuang, Cushman, Das, Silva, Dedoussis, Dimitrov, Doumatey, Du, Duan, Eckardt, Emery, Evans, Evans, Fischer, Floyd, Ford, Fornage, Franco, Frayling, Freedman, Fuchsberger, Genter, Gerstein, Giedraitis, González-Villalpando, González-Villalpando, Goodarzi, Gordon-Larsen, Gorkin, Gross, Guo, Hackinger, Han, Hattersley, Herder, Howard, Hsueh, Huang, Huang, Hung, Hwang, Hwu, Ichihara, Ikram, Ingelsson, Islam, Isono, Jang, Jasmine, Jiang, Jonas, Jørgensen, Jørgensen, Kamatani, Kandeel, Kasturiratne, Katsuya, Kaur, Kawaguchi, Keaton, Kho, Khor, Kibriya, Kim, Kohara, Kriebel, Kronenberg, Kuusisto, Läll, Lange, Lee, Lee, Leong, Li, Li, Li-Gao, Ligthart, Lindgren, Linneberg, Liu, Liu, Locke, Louie, Luan, Luk, Luo, Lv, Lyssenko, Mamakou, Mani, Meitinger, Metspalu, Morris, Nadkarni, Nadler, Nalls, Nayak, Nongmaithem, Ntalla, Okada, Orozco, Patel, Pereira, Peters, Pirie, Porneala, Prasad, Preissl, Rasmussen-Torvik, Reiner, Roden, Rohde, Roll, Sabanayagam, Sander, Sandow, Sattar, Schönherr, Schurmann, Shahriar, Shi, Shin, Shriner, Smith, So, Stančáková, Stilp, Strauch, Suzuki, Takahashi, Taylor, Thorand, Thorleifsson, Thorsteinsdottir, Tomlinson, Torres, Tsai, Tuomilehto, Tusie-Luna, Udler, Valladares-Salgado, Dam, Klinken, Varma, Vujkovic, Wacher-Rodarte, Wheeler, Whitsel, Wickremasinghe, Dijk, Witte, Yajnik, Yamamoto, Yamauchi, Yengo, Yoon, Yu, Yuan, Yusuf, Zhang, Zheng, Rüeger, Briotta, Joo, Hayes, Raffel, Igase, Ipp, Redline, Cho, Lind, Province, Hanis, Peyser, Ingelsson, Zonderman, Psaty, Wang, Rotimi, Becker, Matsuda, Liu, Zeggini, Yokota, Rich, Kooperberg, Pankow, Engert, Chen, Froguel, Wilson, Sheu, Kardia, Wu, Hayes, Ma, Wong, Groop, Mook-Kanamori and Chandak2022) explored the effect of heterogeneity in diverse ancestral populations. They found 136 loci associated with T2DM to be driven by ancestral heterogeneity and 27 loci driven by study design or environmental exposures. From these findings, it is suggested that the heterogeneity in effect sizes observed across different ancestral populations is due to genetic variation more than study design or geographical location (Mahajan et al., Reference Mahajan, Spracklen, Zhang, Ng, Petty, Kitajima, Yu, Rüeger, Speidel, Kim, Horikoshi, Mercader, Taliun, Moon, Kwak, Robertson, Rayner, Loh, Kim, Chiou, Miguel-Escalada, Briotta, Lin, Bragg, Preuss, Takeuchi, Nano, Guo, Lamri, Nakatochi, Scott, Lee, Huerta-Chagoya, Graff, Chai, Parra, Yao, Bielak, Tabara, Hai, Steinthorsdottir, Cook, Kals, Grarup, Schmidt, Pan, Sofer, Wuttke, Sarnowski, Gieger, Nousome, Trompet, Long, Sun, Tong, Chen, Ahmad, Noordam, Lim, Tam, Joo, Chen, Raffield, Lecoeur, Prins, Nicolas, Yanek, Chen, Jensen, Tajuddin, Kabagambe, An, Xiang, Choi, Cade, Tan, Flanagan, Abaitua, Adair, Adeyemo, Aguilar-Salinas, Akiyama, Anand, Bertoni, Bian, Bork-Jensen, Brandslund, Brody, Brummett, Buchanan, Canouil, Chan, Chang, Chee, Chen, Chen, Chen, Chen, Chuang, Cushman, Das, Silva, Dedoussis, Dimitrov, Doumatey, Du, Duan, Eckardt, Emery, Evans, Evans, Fischer, Floyd, Ford, Fornage, Franco, Frayling, Freedman, Fuchsberger, Genter, Gerstein, Giedraitis, González-Villalpando, González-Villalpando, Goodarzi, Gordon-Larsen, Gorkin, Gross, Guo, Hackinger, Han, Hattersley, Herder, Howard, Hsueh, Huang, Huang, Hung, Hwang, Hwu, Ichihara, Ikram, Ingelsson, Islam, Isono, Jang, Jasmine, Jiang, Jonas, Jørgensen, Jørgensen, Kamatani, Kandeel, Kasturiratne, Katsuya, Kaur, Kawaguchi, Keaton, Kho, Khor, Kibriya, Kim, Kohara, Kriebel, Kronenberg, Kuusisto, Läll, Lange, Lee, Lee, Leong, Li, Li, Li-Gao, Ligthart, Lindgren, Linneberg, Liu, Liu, Locke, Louie, Luan, Luk, Luo, Lv, Lyssenko, Mamakou, Mani, Meitinger, Metspalu, Morris, Nadkarni, Nadler, Nalls, Nayak, Nongmaithem, Ntalla, Okada, Orozco, Patel, Pereira, Peters, Pirie, Porneala, Prasad, Preissl, Rasmussen-Torvik, Reiner, Roden, Rohde, Roll, Sabanayagam, Sander, Sandow, Sattar, Schönherr, Schurmann, Shahriar, Shi, Shin, Shriner, Smith, So, Stančáková, Stilp, Strauch, Suzuki, Takahashi, Taylor, Thorand, Thorleifsson, Thorsteinsdottir, Tomlinson, Torres, Tsai, Tuomilehto, Tusie-Luna, Udler, Valladares-Salgado, Dam, Klinken, Varma, Vujkovic, Wacher-Rodarte, Wheeler, Whitsel, Wickremasinghe, Dijk, Witte, Yajnik, Yamamoto, Yamauchi, Yengo, Yoon, Yu, Yuan, Yusuf, Zhang, Zheng, Rüeger, Briotta, Joo, Hayes, Raffel, Igase, Ipp, Redline, Cho, Lind, Province, Hanis, Peyser, Ingelsson, Zonderman, Psaty, Wang, Rotimi, Becker, Matsuda, Liu, Zeggini, Yokota, Rich, Kooperberg, Pankow, Engert, Chen, Froguel, Wilson, Sheu, Kardia, Wu, Hayes, Ma, Wong, Groop, Mook-Kanamori and Chandak2022). In another study by Chen et al. (Reference Chen, Corona, Sikora, Dudley, Morgan, Moreno-Estrada, Nilsen, Ruau, Lincoln, Bustamante and Butte2012), disease association data from 5,065 papers were manually curated, and T2DM genetic risk was seen to be higher for individuals in the African populations and lower in the Asian populations. Some ancestry-specific gene–environment interaction factors may be responsible for the disparity observed; hence, further GWASs adjusting for many environmental factors could help understand the mechanisms and origin of T2DM across different ancestries. T2DM has been linked to changes in beta-cell activity and reduced insulin production (Haffner et al., Reference Haffner, D’Agostino, Saad, Rewers, Mykkänen, Selby, Howard, Savage, Hamman and Wagenknecht1996; Ferrannini and Mari, Reference Ferrannini and Mari2004; Lorenzo et al., Reference Lorenzo, Wagenknecht, D’Agostino, Rewers, Karter and Haffner2010). Although the molecular mechanisms underlying altered beta-cell secretion and insulin kinetics in T2DM patients are unknown, there is clear evidence for genetic (and epigenetic) as well as environmental factors such as physical inactivity and overweight/obesity, which are more prevalent in Africans and Europeans (Kolb and Martin, Reference Kolb and Martin2017; Ali et al., Reference Ali, Soo, Agongo, Alberts, Amenga-Etego, Boua, Choudhury, Crowther, Depuur, Gómez-Olivé, Guiraud, Haregu, Hazelhurst, Kahn, Khayeka-Wandabwa, Kyobutungi, Lombard, Mashinya, Micklesfield, Mohamed, Mukomana, Nakanabo-Diallo, Natama, Ngomi, Nonterah, Norris, Oduro, Somé, Sorgho, Tindana, Tinto, Tollman, Twine, Wade, Sankoh and Ramsay2018; Dendup et al., Reference Dendup, Feng, Clingan and Astell-Burt2018) (Table 1).

Table 1. Examples of genes implicated in different CVD outcomes and risk factors that confer heterogeneity across ancestries

Abbreviations: BMI, body mass index; CVD, cardiovascular disease.

Lipids

High levels of circulating low-density lipoprotein cholesterol (LDL-c) and low levels of circulating high-density lipoprotein cholesterol (HDL-c) are risk factors for stroke and heart disease (Roger et al., Reference Roger, Go, Lloyd-Jones, Adams, Berry, Brown, Carnethon, Dai, Simone, Ford, Fox, Fullerton, Gillespie, Greenlund, Hailpern, Heit, Ho, Howard, Kissela, Kittner, Lackland, Lichtman, Lisabeth, Makuc, Marcus, Marelli, Matchar, McDermott, Meigs, Moy, Mozaffarian, Mussolino, Nichol, Paynter, Rosamond, Sorlie, Stafford, Turan, Turner, Wong and Wylie-Rosett2011). Of note is the opposing relationship of LDL-c with ischemic and haemorrhagic stroke in Chinese populations (Sun et al., Reference Sun, Clarke, Bennett, Guo, Walters, Hill, Parish, Millwood, Bian, Chen, Yu, Lv, Collins, Chen, Peto, Li and Chen2019), which highlights the need for careful phenotypic definitions when ascertaining the role of genetic variation across studies considering different populations.

Blood lipid levels, including LDL-c, HDL-c and triglycerides (TG), are heritable, with known genetic variants explaining 10%–15% of phenotypic variations (Pilia et al., Reference Pilia, Chen, Scuteri, Orrú, Albai, Dei, Lai, Usala, Lai, Loi, Mameli, Vacca, Deiana, Olla, Masala, Cao, Najjar, Terracciano, Nedorezov, Sharov, Zonderman, Abecasis, Costa, Lakatta and Schlessinger2006). Evaluation of transferability of lipid associations detected in a European discovery GWAS to Asian and African ancestry replication cohorts shows considerable variation in the extent of replication of the three lipid traits (Kuchenbaecker et al., Reference Kuchenbaecker, Telkar, Reiker, Walters, Lin, Eriksson, Gurdasani, Gilly, Southam, Tsafantakis, Karaleftheri, Seeley, Kamali, Asiki, Millwood, Holmes, Du, Guo, Kumari, Dedoussis, Li, Chen, Sandhu, Zeggini, Benzeval, Burton, Buck, Jäckle, Laurie, Lynn, Pudney, Rabe and Wolke2019). While more than 75% of variants with strong associations (P-value < 10−100) for HDL-c and LDL-c replicate in all ancestries, only approximately 57% of strong TG associations replicate in the African cohort. Moreover, the associations detected at higher P-values showed much lower transferability (<30% in African populations across lipid traits). Although the transferability of associations to African populations might improve substantially with the use of more trans-ethnic discovery GWASs and larger representative African datasets, there is a strong possibility a sizable portion of these associations might be actually ancestry-specific (Choudhury et al., Reference Choudhury, Brandenburg, Chikowore, Sengupta, Boua, Crowther, Agongo, Asiki, Gómez-Olivé, Kisiangani, Maimela, Masemola-Maphutha, Micklesfield, Nonterah, Norris, Sorgho, Tinto, Tollman, Graham, Willer, Hazelhurst, Ramsay, study and Consortium2022). For example, the largest multi-ancestry GWAS by Graham et al. (Reference Graham, Clarke, Wu, Kanoni, Zajac, Ramdas, Surakka, Ntalla, Vedantam, Winkler, Locke, Marouli, Hwang, Han, Narita, Choudhury, Bentley, Ekoru, Verma, Trivedi, Martin, Hunt, Hui, Klarin, Zhu, Thorleifsson, Helgadottir, Gudbjartsson, Holm, Olafsson, Akiyama, Sakaue, Terao, Kanai, Zhou, Brumpton, Rasheed, Ruotsalainen, Havulinna, Veturi, Feng, Rosenthal, Lingren, Pacheco, Pendergrass, Haessler, Giulianini, Bradford, Miller, Campbell, Lin, Millwood, Hindy, Rasheed, Faul, Zhao, Weir, Turman, Huang, Graff, Mahajan, Brown, Zhang, Yu, Schmidt, Pandit, Gustafsson, Yin, Luan, Zhao, Matsuda, Jang, Yoon, Medina-Gomez, Pitsillides, Hottenga, Willemsen, Wood, Ji, Gao, Haworth, Mitchell, Chai, Aadahl, Yao, Manichaikul, Warren, Ramirez, Bork-Jensen, Kårhus, Goel, Sabater-Lleal, Noordam, Sidore, Fiorillo, McDaid, Marques-Vidal, Wielscher, Trompet, Sattar, Møllehave, Thuesen, Munz, Zeng, Huang, Yang, Poveda, Kurbasic, Lamina, Forer, Scholz, Galesloot, Bradfield, Daw, Zmuda, Mitchell, Fuchsberger, Christensen, Brody, Feitosa, Wojczynski, Preuss, Mangino, Christofidou, Verweij, Benjamins, Engmann, Kember, Slieker, Lo, Zilhao, Le, Kleber, Delgado, Huo, Ikeda, Iha, Yang, Liu, Leonard, Marten, Schmidt, Arendt, Smyth, Cañadas-Garre, Wang, Nakatochi, Wong, Hutri-Kähönen, Sim, Xia, Huerta-Chagoya, Fernandez-Lopez, Lyssenko, Ahmed, Jackson, Irvin, Oldmeadow, Kim, Ryu, Timmers, Arbeeva, Dorajoo, Lange, Chai, Prasad, Lorés-Motta, Pauper, Long, Li, Theusch, Takeuchi, Spracklen, Loukola, Bollepalli, Warner, Wang, Wei, Nutile, Ruggiero, Sung, Hung, Chen, Liu, Yang, Kentistou, Gorski, Brumat, Meidtner, Bielak, Smith, Hebbar, Farmaki, Hofer, Lin, Xue, Zhang, Concas, Vaccargiu, Most, Pitkänen, Cade, Lee, Laan, Chitrala, Weiss, Zimmermann, Lee, Choi, Nethander, Freitag-Wolf, Southam, Rayner, Wang, Lin, Wang, Couture, Lyytikäinen, Nikus, Cuellar-Partida, Vestergaard, Hildalgo, Giannakopoulou, Cai, Obura, Setten, Li, Schwander, Terzikhan, Shin, Jackson, Reiner, Martin, Chen, Li, Highland, Young, Kawaguchi, Thiery, Bis, Nadkarni, Launer, Li, Nalls, Raitakari, Ichihara, Wild, Nelson, Campbell, Jäger, Nabika, Al-Mulla, Niinikoski, Braund, Kolcic, Kovacs, Giardoglou, Katsuya, Bhatti, Kleijn, Borst, Kim, Adams, Ikram, Zhu, Asselbergs, Kraaijeveld, Beulens, Shu, Rallidis, Pedersen, Hansen, Mitchell, Hewitt, Kähönen, Pérusse, Bouchard, Tönjes, Chen, Pennell, Mori, Lieb, Franke, Ohlsson, Mellström, Cho, Lee, Yuan, Koh, Rhee, Woo, Heid, Stark, Völzke, Homuth, Evans, Zonderman, Polasek, Pasterkamp and Hoefer2021) showed that 76% of the 773 lipid associated regions identified in at least one of the five ancestries studied were found in Europeans, 15 loci were unique to Admixed African or Africans, 6 to East Asian, 6 to Hispanics and 1 to South Asians.

Hypertension

Hypertension is a major risk factor for CVD with an estimated heritability between 30% and 60% (Sung et al., Reference Sung, Winkler, de Las Fuentes, Bentley, Brown, Kraja, Schwander, Ntalla, Guo, Franceschini, Lu, Cheng, Sim, Vojinovic, Marten, Musani, Li, Feitosa, Kilpeläinen, Richard, Noordam, Aslibekyan, Aschard, Bartz, Dorajoo, Liu, Manning, Rankinen, Smith, Tajuddin, Tayo, Warren, Zhao, Zhou, Matoba, Sofer, Alver, Amini, Boissel, Chai, Chen, Divers, Gandin, Gao, Giulianini, Goel, Harris, Hartwig, Horimoto, Hsu, Jackson, Kähönen, Kasturiratne, Kühnel, Leander, Lee, Lin, ’an, McKenzie, Meian, Nelson, Rauramaa, Schupf, Scott, Sheu, Stančáková, Takeuchi, Most, Varga, Wang, Wang, Ware, Weiss, Wen, Yanek, Zhang, Zhao, Afaq, Alfred, Amin, Arking, Aung, Barr, Bielak, Boerwinkle, Bottinger, Braund, Brody, Broeckel, Cabrera, Cade, Caizheng, Campbell, Canouil, Chakravarti, Chauhan, Christensen, Cocca, Collins, Connell, Mutsert, Silva, Debette, Dörr, Duan, Eaton, Ehret, Evangelou, Faul, Fisher, Forouhi, Franco, Friedlander, Gao, Gigante, Graff, Gu, Gu, Gupta, Hagenaars, Harris, He, Heikkinen, Heng, Hirata, Hofman, Howard, Hunt, Irvin, Jia, Joehanes, Justice, Katsuya, Kaufman, Kerrison, Khor, Koh, Koistinen, Komulainen, Kooperberg, Krieger, Kubo, Kuusisto, Langefeld, Langenberg, Launer, Lehne, Lewis, Li, Lim, Lin, Liu, Liu, Liu, Liu, Liu, Loh, Lohman, Long, Louie, Mägi, Mahajan, Meitinger, Metspalu, Milani, Momozawa, Morris, Mosley, Munson, Murray, Nalls, Nasri, Norris, North, Ogunniyi, Padmanabhan, Palmas, Palmer, Pankow, Pedersen, Peters, Peyser, Polasek, Raitakari, Renström, Rice, Ridker, Robino, Robinson, Rose, Rudan, Sabanayagam, Salako, Sandow, Schmidt, Schreiner, Scott, Seshadri, Sever, Sitlani, Smith, Snieder, Starr, Strauch, Tang, Taylor, Teo, Tham, Uitterlinden, Waldenberger, Wang, Wang, Wei, Williams, Wilson, Wojczynski, Yao, Yuan, Zonderman, Becker, Boehnke, Bowden, Chambers, Chen, Faire, Deary, Esko, Farrall, Forrester, Franks, Freedman, Froguel, Gasparini, Gieger, Horta, Hung, Jonas, Kato, Kooner, Laakso, Lehtimäki, Liang, Magnusson, Newman, Oldehinkel, Pereira, Redline, Rettig, Samani, Scott, Shu, Harst, Wagenknecht, Wareham, Watkins, Weir, Wickremasinghe, Wu, Zheng, Kamatani, Laurie, Bouchard, Cooper, Evans, Gudnason, Kardia, Kritchevsky, Levy, O’Connell, Psaty, Dam, Sims, Arnett, Mook-Kanamori, Kelly, Fox, Hayward, Fornage, Rotimi, Province, Duijn, Tai, Wong, Loos, Reiner, Rotter, Zhu, Bierut, Gauderman, Caulfield, Elliott, Rice, Munroe, Morrison, Cupples, Rao and Chasman2018), and more than 200 genetic loci are known to be related with hypertension (Ehret et al., Reference Ehret, Munroe, Rice, Bochud, Johnson, Chasman, Smith, Tobin, Verwoert, Hwang, Pihur, Vollenweider, O’Reilly, Amin, Bragg-Gresham, Teumer, Glazer, Launer, Zhao, Aulchenko, Heath, Sõber, Parsa, Luan, Arora, Dehghan, Zhang, Lucas, Hicks, Jackson, Peden, Tanaka, Wild, Rudan, Igl, Milaneschi, Parker, Fava, Chambers, Fox, Kumari, Go, Harst, Kao, Sjögren, Vinay, Alexander, Tabara, Shaw-Hawkins, Whincup, Liu, Shi, Kuusisto, Tayo, Seielstad, Sim, Nguyen, Lehtimäki, Matullo, Wu, Gaunt, Onland-Moret, Cooper, Platou, Org, Hardy, Dahgam, Palmen, Vitart, Braund, Kuznetsova, Uiterwaal, Adeyemo, Palmas, Campbell, Ludwig, Tomaszewski, Tzoulaki, Palmer, Aspelund, Garcia, Chang, O’Connell, Steinle, Grobbee, Arking, Kardia, Morrison, Hernandez, Najjar, McArdle, Hadley, Brown, Connell, Hingorani, Day, Lawlor, Beilby, Lawrence, Clarke, Hopewell, Ongen, Dreisbach, Li, Young, Bis, Kähönen, Viikari, Adair, Lee, Chen, Olden, Pattaro, Bolton, Köttgen, Bergmann, Mooser, Chaturvedi, Frayling, Islam, Jafar, Erdmann, Kulkarni, Bornstein, Grässler, Groop, Voight, Kettunen, Howard, Taylor, Guarrera, Ricceri, Emilsson, Plump, Barroso, Khaw, Weder, Hunt, Sun, Bergman, Collins, Bonnycastle, Scott, Stringham, Peltonen, Perola, Vartiainen, Brand, Staessen, Wang, Burton, Soler, Dong, Snieder, Wang, Zhu, Lohman, Rudock, Heckbert, Smith, Wiggins, Doumatey, Shriner, Veldre, Viigimaa, Kinra, Prabhakaran, Tripathy, Langefeld, Rosengren, Thelle, Corsi, Singleton, Forrester, Hilton, McKenzie, Salako, Iwai, Kita, Ogihara, Ohkubo, Okamura, Ueshima, Umemura, Eyheramendy, Meitinger, Wichmann, Cho, Kim, Lee, Scott, Sehmi, Zhang, Hedblad, Nilsson, Smith, Wong, Narisu, Stančáková, Raffel, Yao, Kathiresan, O’Donnell, Schwartz, Ikram, Longstreth, Mosley, Seshadri, Shrine, Wain, Morken, Swift, Laitinen, Prokopenko, Zitting, Cooper, Humphries, Danesh, Rasheed, Goel, Hamsten, Watkins, Bakker, Gilst, Janipalli, Mani, Yajnik, Hofman, Mattace-Raso, Oostra, Demirkan, Isaacs, Rivadeneira, Lakatta, Orru, Scuteri, Ala-Korpela, Kangas, Lyytikäinen, Soininen, Tukiainen, Würtz, Ong, Dörr, Kroemer, Völker, Völzke, Galan, Hercberg, Lathrop, Zelenika, Deloukas, Mangino, Spector, Zhai, Meschia, Nalls, Sharma, Terzic, Kumar, Denniff, Zukowska-Szczechowska, Wagenknecht, Fowkes, Charchar, Schwarz, Hayward, Guo, Rotimi, Bots, Brand, Samani, Polasek, Talmud, Nyberg, Kuh, Laan, Hveem, Palmer, Schouw, Casas, Mohlke, Vineis, Raitakari, Ganesh, Wong, Tai, Cooper, Laakso, Rao, Harris, Morris, Dominiczak, Kivimaki, Marmot, Miki, Saleheen, Chandak, Coresh, Navis, Salomaa, Han, Zhu, Kooner, Melander, Ridker, Bandinelli, Gyllensten, Wright, Wilson, Ferrucci, Farrall, Tuomilehto, Pramstaller, Elosua, Soranzo, Sijbrands, Altshuler, Loos, Shuldiner, Gieger, Meneton, Uitterlinden, Wareham, Gudnason, Rotter, Rettig, Uda, Strachan, Witteman, Hartikainen, Beckmann, Boerwinkle, Vasan, Boehnke, Larson, Järvelin, Psaty, Abecasis, Chakravarti, Elliott, Duijn, Newton-Cheh, Levy, Caulfield and Johnson2011, Reference Ehret, Ferreira, Chasman, Jackson, Schmidt, Johnson, Thorleifsson, Luan, Donnelly, Kanoni, Petersen, Pihur, Strawbridge, Shungin, Hughes, Meirelles, Kaakinen, Bouatia-Naji, Kristiansson, Shah, Kleber, Guo, Lyytikäinen, Fava, Eriksson, Nolte, Magnusson, Salfati, Rallidis, Theusch, Smith, Folkersen, Witkowska, Pers, Joehanes, Kim, Lataniotis, Jansen, Johnson, Warren, Kim, Zhao, Wu, Tayo, Bochud, Absher, Adair, Amin, Arking, Axelsson, Baldassarre, Balkau, Bandinelli, Barnes, Barroso, Bevan, Bis, Bjornsdottir, Boehnke, Boerwinkle, Bonnycastle, Boomsma, Bornstein, Brown, Burnier, Cabrera, Chambers, Chang, Cheng, Chines, Chung, Collins, Connell, Döring, Dallongeville, Danesh, Faire, Delgado, Dominiczak, Doney, Drenos, Edkins, Eicher, Elosua, Enroth, Erdmann, Eriksson, Esko, Evangelou, Evans, Fall, Farrall, Felix, Ferrières, Ferrucci, Fornage, Forrester, Franceschini, Duran, Franco-Cereceda, Fraser, Ganesh, Gao, Gertow, Gianfagna, Gigante, Giulianini, Goel, Goodall, Goodarzi, Gorski, Gräßler, Groves, Gudnason, Gyllensten, Hallmans, Hartikainen, Hassinen, Havulinna, Hayward, Hercberg, Herzig, Hicks, Hingorani, Hirschhorn, Hofman, Holmen, Holmen, Hottenga, Howard, Hsiung, Hunt, Ikram, Illig, Iribarren, Jensen, Kähönen, Kang, Kathiresan, Keating, Khaw, Kim, Kim, Kivimaki, Klopp, Kolovou, Komulainen, Kooner, Kosova, Krauss, Kuh, Kutalik, Kuusisto, Kvaløy, Lakka, Lee, Lee, Lee, Levy, Li, Liang, Lin, Lin, Lindström, Lobbens, Männistö, Müller, Müller-Nurasyid, Mach, Markus, Marouli, McCarthy, McKenzie, Meneton, Menni, Metspalu, Mijatovic, Moilanen, Montasser, Morris, Morrison, Mulas, Nagaraja, Narisu, Nikus, O’Donnell, O’Reilly, Ong, Paccaud, Palmer, Parsa, Pedersen, Penninx, Perola, Peters, Poulter, Pramstaller, Psaty, Quertermous, Rao, Rasheed, Rayner, Renström, Rettig, Rice, Roberts, Rose, Rossouw, Samani, Sanna, Saramies, Schunkert, Sebert, Sheu, Shin, Sim, Smit, Smith, Sosa, Spector, Stančáková, Stanton, Stirrups, Stringham, Sundstrom, Swift, Syvänen, Tai, Tanaka, Tarasov, Teumer, Thorsteinsdottir, Tobin, Tremoli, Uitterlinden, Uusitupa, Vaez, Vaidya, Duijn, Iperen, Vasan, Verwoert, Virtamo, Vitart, Voight, Vollenweider, Wagner, Wain, Wareham, Watkins, Weder, Westra, Wilks, Wilsgaard, Wilson, Wong, Yang, Yao, Yengo, Zhang, Zhao, Zhu, Bovet, Cooper, Mohlke, Saleheen, Lee, Elliott, Gierman, Willer, Franke, Hovingh, Taylor, Dedoussis, Sever, Wong, Lind, Assimes, Njølstad, Schwarz, Langenberg, Snieder, Caulfield, Melander, Laakso, Saltevo, Rauramaa, Tuomilehto, Ingelsson, Lehtimäki, Hveem, Palmas, März, Kumari, Salomaa, Chen, Rotter, Froguel, Jarvelin, Lakatta, Kuulasmaa, Franks, Hamsten, Wichmann, Palmer, Stefansson, Ridker, Loos, Chakravarti, Deloukas, Morris, Newton-Cheh and Munroe2016; Surendran et al., Reference Surendran, Drenos, Young, Warren, Cook, Manning, Grarup, Sim, Barnes, Witkowska, Staley, Tragante, Tukiainen, Yaghootkar, Masca, Freitag, Ferreira, Giannakopoulou, Tinker, Harakalova, Mihailov, Liu, Kraja, Fallgaard, Rasheed, Samuel, Zhao, Bonnycastle, Jackson, Narisu, Swift, Southam, Marten, Huyghe, Stančáková, Fava, Ohlsson, Matchan, Stirrups, Bork-Jensen, Gjesing, Kontto, Perola, Shaw-Hawkins, Havulinna, Zhang, Donnelly, Groves, Rayner, Neville, Robertson, Yiorkas, Herzig, Kajantie, Zhang, Willems, Lannfelt, Malerba, Soranzo, Trabetti, Verweij, Evangelou, Moayyeri, Vergnaud, Nelson, Poveda, Varga, Caslake, Craen, Trompet, Luan, Scott, Harris, Liewald, Marioni, Menni, Farmaki, Hallmans, Renström, Huffman, Hassinen, Burgess, Vasan, Felix, Uria-Nickelsen, Malarstig, Reily, Hoek, Vogt, Lin, Lieb, Traylor, Markus, Highland, Justice, Marouli, Lindström, Uusitupa, Komulainen, Lakka, Rauramaa, Polasek, Rudan, Rolandsson, Franks, Dedoussis, Spector, Jousilahti, Männistö, Deary, Starr, Langenberg, Wareham, Brown, Dominiczak, Connell, Jukema, Sattar, Ford, Packard, Esko, Mägi, Metspalu, Boer, Meer, Harst, Gambaro, Ingelsson, Lind, Bakker, Numans, Brandslund, Christensen, Petersen, Korpi-Hyövälti, Oksa, Chambers, Kooner, Blakemore, Franks, Jarvelin, Husemoen, Linneberg, Skaaby, Thuesen, Karpe, Tuomilehto, Doney, Morris, Palmer, Holmen, Hveem, Willer, Tuomi, Groop, Käräjämäki, Palotie, Ripatti, Salomaa, Alam, Shafi, Angelantonio, Chowdhury, McCarthy, Poulter, Stanton, Sever, Amouyel, Arveiler, Blankenberg, Ferrières, Kee, Kuulasmaa, Müller-Nurasyid, Veronesi, Virtamo, Deloukas, Elliott, Zeggini, Kathiresan, Melander, Kuusisto, Laakso, Padmanabhan, Porteous, Hayward, Scotland, Collins, Mohlke, Hansen, Pedersen, Boehnke, Stringham, Frossard, Newton-Cheh, Tobin, Nordestgaard, Caulfield, Mahajan, Morris, Tomaszewski, Samani, Saleheen, Asselbergs, Lindgren, Danesh, Wain, Butterworth, Howson and Munroe2016). The risk of developing hypertension is attributable to genetic, environmental and demographic factors. The prevalence of hypertension is higher in individuals of East Asian ancestry, who also have a higher risk of stroke than their European counterparts (Takeuchi et al., Reference Takeuchi, Akiyama, Matoba, Katsuya, Nakatochi, Tabara, Narita, Saw, Moon, Spracklen, Chai, Kim, Zhang, Wang, Li, Li, Wu, Dorajoo, Nierenberg, Wang, He, Bennett, Takahashi, Momozawa, Hirata, Matsuda, Rakugi, Nakashima, Isono, Shirota, Hozawa, Ichihara, Matsubara, Yamamoto, Kohara, Igase, Han, Gordon-Larsen, Huang, Lee, Adair, Hwang, Lee, Chee, Sabanayagam, Zhao, Liu, Reilly, Sun, Huo, Edwards, Long, Chang, Chen, Yuan, Koh, Friedlander, Kelly, Wei, Xu, Cai, Xiang, Lin, Clarke, Walters, Millwood, Li, Chambers, Kooner, Elliott, Harst, Loh, Verweij, Zhang, Lehne, Mateo, Drong, Abbott, Tan, Scott, Campanella, Chadeau-Hyam, Afzal, Esko, Harris, Hartiala, Kleber, Saxena, Stewart, Ahluwalia, Aits, Couto, Das, Hopewell, Koivula, Lyytikäinen, Postmus, Raitakari, Scott, Sorice, Tragante, Traglia, White, Barroso, Bjonnes, Collins, Davies, Delgado, Doevendans, Franke, Gansevoort, Grammer, Grarup, Grewal, Hartikainen, Hazen, Hsu, Husemoen, Justesen, Kumari, Lieb, Liewald, Mihailov, Milani, Mills, Mononen, Nikus, Nutile, Parish, Rolandsson, Ruggiero, Sala, Snieder, Spasø, Spiering, Starr, Stott, Stram, Szymczak, Tang, Trompet, Turjanmaa, Vaarasmaki, Gilst, Veldhuisen, Viikari, Asselbergs, Ciullo, Franke, Franks, Franks, Gross, Hansen, Jarvelin, Jørgensen, Jukema, Kähönen, Kivimaki, Lehtimäki, Linneberg, Pedersen, Samani, Toniolo, Allayee, Deary, März, Metspalu, Wijmenga, Wolffenbuttel, Vineis, Kyrtopoulos, Kleinjans, McCarthy, Scott, Chen, Sasaki, Shu, Jonas, He, Heng, Chen, Zheng, Lin, Teo, Tai, Cheng, Wong, Sim, Mohlke, Yamamoto, Kim, Miki, Nabika, Yokota, Kamatani, Kubo and Kato2018). To determine if heterogeneity exists in BP traits between East Asians and Europeans, Takeuchi et al. performed a multi-staged GWAS. In this study, they found inter-ancestry heterogeneity in eight loci mapped near CACNB2, C10orf107, SH2B3, DPEP1 and ALDH2 (Takeuchi et al., Reference Takeuchi, Akiyama, Matoba, Katsuya, Nakatochi, Tabara, Narita, Saw, Moon, Spracklen, Chai, Kim, Zhang, Wang, Li, Li, Wu, Dorajoo, Nierenberg, Wang, He, Bennett, Takahashi, Momozawa, Hirata, Matsuda, Rakugi, Nakashima, Isono, Shirota, Hozawa, Ichihara, Matsubara, Yamamoto, Kohara, Igase, Han, Gordon-Larsen, Huang, Lee, Adair, Hwang, Lee, Chee, Sabanayagam, Zhao, Liu, Reilly, Sun, Huo, Edwards, Long, Chang, Chen, Yuan, Koh, Friedlander, Kelly, Wei, Xu, Cai, Xiang, Lin, Clarke, Walters, Millwood, Li, Chambers, Kooner, Elliott, Harst, Loh, Verweij, Zhang, Lehne, Mateo, Drong, Abbott, Tan, Scott, Campanella, Chadeau-Hyam, Afzal, Esko, Harris, Hartiala, Kleber, Saxena, Stewart, Ahluwalia, Aits, Couto, Das, Hopewell, Koivula, Lyytikäinen, Postmus, Raitakari, Scott, Sorice, Tragante, Traglia, White, Barroso, Bjonnes, Collins, Davies, Delgado, Doevendans, Franke, Gansevoort, Grammer, Grarup, Grewal, Hartikainen, Hazen, Hsu, Husemoen, Justesen, Kumari, Lieb, Liewald, Mihailov, Milani, Mills, Mononen, Nikus, Nutile, Parish, Rolandsson, Ruggiero, Sala, Snieder, Spasø, Spiering, Starr, Stott, Stram, Szymczak, Tang, Trompet, Turjanmaa, Vaarasmaki, Gilst, Veldhuisen, Viikari, Asselbergs, Ciullo, Franke, Franks, Franks, Gross, Hansen, Jarvelin, Jørgensen, Jukema, Kähönen, Kivimaki, Lehtimäki, Linneberg, Pedersen, Samani, Toniolo, Allayee, Deary, März, Metspalu, Wijmenga, Wolffenbuttel, Vineis, Kyrtopoulos, Kleinjans, McCarthy, Scott, Chen, Sasaki, Shu, Jonas, He, Heng, Chen, Zheng, Lin, Teo, Tai, Cheng, Wong, Sim, Mohlke, Yamamoto, Kim, Miki, Nabika, Yokota, Kamatani, Kubo and Kato2018). ALDH2 is an important enzyme involved in alcohol metabolism. The polymorphism induced by rs671 produces an inactive subunit of ALDH2, which leads to accumulation of acetaldehyde after alcohol intake (Takeshita et al., Reference Takeshita, Morimoto, Mao, Hashimoto and Furuyama1993). Acetaldehyde elevation lowers blood pressure through vasodilation, which is linked to the characteristic physiological effects such as high temperature, increased heart and respiration rates and palpitations seen among ALDH2 *2*2 homozygotes, the frequency of which varies across different ancestry groups (Quertemont and Didone, Reference Quertemont and Didone2006).

Clinical importance of leveraging genetic heterogeneity across ancestry groups

An appreciation of genetic heterogeneity across ancestries has a number of advantages. First, it would improve our understanding of disease mechanisms given that pathophysiology likely varies across ancestries in part due to genetic variation. For instance, selectively studying those genes that are ancestry-specific would shed more light on the pathogenesis and clinical presentation of CVD. Second, elucidating ancestry-specific molecular pathways involved in a disease can in turn help determine ancestry-specific susceptibility to the disease. Different ancestries carry different combinations of risk alleles that predispose them to disease risk. Identifying how these risk alleles vary across ancestries would help in early detection of individuals at high risk and further help prioritise those individuals who would benefit from intervention. Third, understanding how genetic heterogeneity influences an individual’s response to drugs is important, given that many drugs are primarily developed in European ancestry individuals. Finally, knowledge of differential susceptibility to risk factors improves clinical management of patients. For instance, in the prevention of stroke, blood pressure control may be more important in African ancestry individuals given that the risk of stroke in African ancestry individuals with hypertension is three times higher than that of Europeans (Spence and Rayner, Reference Spence and Rayner2018).

Differences in drug response

Ancestry can influence inter-individual differences in drug exposure and/or responsiveness, altering the risk–benefit ratio in certain subgroups of patients (Figure 2). Differences in drug responsiveness between different ancestries may in part be attributable to differences in the distribution of polymorphisms associated with the enzymes involved in drug metabolism. A single-nucleotide variation in a candidate gene can have a significant impact on pharmacological response (Cazzola et al., Reference Cazzola, Calzetta, Matera, Hanania and Rogliani2018). Individuals of different ancestries have been shown to respond differently to antihypertensive therapy (Preston et al., Reference Preston, Materson, Reda, Williams, Hamburger, Cushman and Anderson1998; Julius et al., Reference Julius, Alderman, Beevers, Dahlöf, Devereux, Douglas, Edelman, Harris, Kjeldsen, Nesbitt, Randall and Wright2004; Wright et al., Reference Wright, Dunn, Cutler, Davis, Cushman, Ford, Haywood, Leenen, Margolis, Papademetriou, Probstfield, Whelton and Habib2005; Shin and Johnson, Reference Shin and Johnson2007; Gong et al., Reference Gong, Wang, Beitelshees, McDonough, Langaee, Hall, Schmidt, Curry, Gums, Bailey, Boerwinkle, Chapman, Turner, Cooper-DeHoff and Johnson2016), heart failure therapy (Carson et al., Reference Carson, Ziesche, Johnson and Cohn1999; Beta-Blocker Evaluation of Survival Trial Investigators et al., Reference Eichhorn, Domanski, Krause-Steinrauf, Bristow and Lavori2001; Exner et al., Reference Exner, Dries, Domanski and Cohn2001; Dries et al., Reference Dries, Strong, Cooper and Drazner2002), lipid-lowering therapy (Lee et al., Reference Lee, Ryan, Birmingham, Zalikowski, March, Ambrose, Moore, Lee, Chen and Schneck2005; ‘High-dose atorvastatin after stroke or transient ischemic attack’, 2006; Liao, Reference Liao2007; Link et al., Reference Link, Parish, Armitage, Bowman, Heath, Matsuda, Gut, Lathrop and Collins2008; Ieiri et al., Reference Ieiri, Higuchi and Sugiyama2009; SEARCH Collaborative Group, 2010; Hu et al., Reference Hu, Cheung and Tomlinson2012; H.-K. Lee et al., Reference Lee, Hu, Lui, Ho, Wong and Tomlinson2013), antiplatelet therapy (Mega et al., Reference Mega, Simon, Collet, Anderson, Antman, Bliden, Cannon, Danchin, Giusti, Gurbel, Horne, Hulot, Kastrati, Montalescot, Neumann, Shen, Sibbing, Steg, Trenk, Wiviott and Sabatine2010; Chan et al., Reference Chan, Tan, Tan, Huan, Li, Phua, Lee, Lee, Low, Becker, Ong, Richards, Salim, Tai and Koay2012) and anticoagulant therapy (You et al., Reference You, Chan, Wong and Cheng2005; Keeling et al., Reference Keeling, Baglin, Tait, Watson, Perry, Baglin, Kitchen and Makris2011; Hori et al., Reference Hori, Connolly, Zhu, Liu, Lau, Pais, Xavier, Kim, Omar, Dans, Tan, Chen, Tanomsup, Watanabe, Koyanagi, Ezekowitz, Reilly, Wallentin and Yusuf2013; Yamashita et al., Reference Yamashita, Inoue, Okumura, Atarashi and Origasa2015) (Table 2).

Figure 2. Multi-ancestry pharmacogenetics in the scope of personalised drug therapy. Figure created using BioRender.com.

Table 2. Influence of ancestry on drug response

Limited transferability of polygenic risk scores across diverse population groups

Risk prediction of cardiometabolic traits and CVD through genetic risk scores may be more clinically applicable through an enhanced understanding of the genetic architecture of complex traits, population risk-stratification and tailored interventions (Márquez-Luna et al., Reference Márquez-Luna, Loh and Price2017). The use of European data for polygenic risk score (PRS) prediction in non-European and genetically diverse populations reduces prediction accuracy due to ancestral differences in LD patterns and allele frequencies. The lack of PRS optimised for non-European populations is a substantial obstacle in paving the way in the roadmap to precision diagnostics (Fatumo et al., Reference Fatumo, Chikowore, Choudhury, Ayub, Martin and Kuchenbaecker2022). Using multi-ancestry summary statistics has the potential to enhance PRS performance in diverse populations, as demonstrated for CAD. Conducting trans-ancestry meta-analyses helped discover 35 additional new CAD loci, which enabled the construction of a PRS for CAD that outperformed PRS using either Japanese or European GWAS data alone (Koyama et al., Reference Koyama, Ito, Terao, Akiyama, Horikoshi, Momozawa, Matsunaga, Ieki, Ozaki, Onouchi, Takahashi, Nomura, Morita, Akazawa, Kim, Seo, Higasa, Iwasaki, Yamaji, Sawada, Tsugane, Koyama, Ikezaki, Takashima, Tanaka, Arisawa, Kuriki, Naito, Wakai, Suna, Sakata, Sato, Hori, Sakata, Matsuda, Murakami, Aburatani, Kubo, Matsuda, Kamatani and Komuro2020). Similarly, it has been demonstrated that genetic data from African ancestry (both continental and diaspora groups) may enhance PRS performance for lipid traits in sub-Saharan Africans (Graham et al., Reference Graham, Clarke, Wu, Kanoni, Zajac, Ramdas, Surakka, Ntalla, Vedantam, Winkler, Locke, Marouli, Hwang, Han, Narita, Choudhury, Bentley, Ekoru, Verma, Trivedi, Martin, Hunt, Hui, Klarin, Zhu, Thorleifsson, Helgadottir, Gudbjartsson, Holm, Olafsson, Akiyama, Sakaue, Terao, Kanai, Zhou, Brumpton, Rasheed, Ruotsalainen, Havulinna, Veturi, Feng, Rosenthal, Lingren, Pacheco, Pendergrass, Haessler, Giulianini, Bradford, Miller, Campbell, Lin, Millwood, Hindy, Rasheed, Faul, Zhao, Weir, Turman, Huang, Graff, Mahajan, Brown, Zhang, Yu, Schmidt, Pandit, Gustafsson, Yin, Luan, Zhao, Matsuda, Jang, Yoon, Medina-Gomez, Pitsillides, Hottenga, Willemsen, Wood, Ji, Gao, Haworth, Mitchell, Chai, Aadahl, Yao, Manichaikul, Warren, Ramirez, Bork-Jensen, Kårhus, Goel, Sabater-Lleal, Noordam, Sidore, Fiorillo, McDaid, Marques-Vidal, Wielscher, Trompet, Sattar, Møllehave, Thuesen, Munz, Zeng, Huang, Yang, Poveda, Kurbasic, Lamina, Forer, Scholz, Galesloot, Bradfield, Daw, Zmuda, Mitchell, Fuchsberger, Christensen, Brody, Feitosa, Wojczynski, Preuss, Mangino, Christofidou, Verweij, Benjamins, Engmann, Kember, Slieker, Lo, Zilhao, Le, Kleber, Delgado, Huo, Ikeda, Iha, Yang, Liu, Leonard, Marten, Schmidt, Arendt, Smyth, Cañadas-Garre, Wang, Nakatochi, Wong, Hutri-Kähönen, Sim, Xia, Huerta-Chagoya, Fernandez-Lopez, Lyssenko, Ahmed, Jackson, Irvin, Oldmeadow, Kim, Ryu, Timmers, Arbeeva, Dorajoo, Lange, Chai, Prasad, Lorés-Motta, Pauper, Long, Li, Theusch, Takeuchi, Spracklen, Loukola, Bollepalli, Warner, Wang, Wei, Nutile, Ruggiero, Sung, Hung, Chen, Liu, Yang, Kentistou, Gorski, Brumat, Meidtner, Bielak, Smith, Hebbar, Farmaki, Hofer, Lin, Xue, Zhang, Concas, Vaccargiu, Most, Pitkänen, Cade, Lee, Laan, Chitrala, Weiss, Zimmermann, Lee, Choi, Nethander, Freitag-Wolf, Southam, Rayner, Wang, Lin, Wang, Couture, Lyytikäinen, Nikus, Cuellar-Partida, Vestergaard, Hildalgo, Giannakopoulou, Cai, Obura, Setten, Li, Schwander, Terzikhan, Shin, Jackson, Reiner, Martin, Chen, Li, Highland, Young, Kawaguchi, Thiery, Bis, Nadkarni, Launer, Li, Nalls, Raitakari, Ichihara, Wild, Nelson, Campbell, Jäger, Nabika, Al-Mulla, Niinikoski, Braund, Kolcic, Kovacs, Giardoglou, Katsuya, Bhatti, Kleijn, Borst, Kim, Adams, Ikram, Zhu, Asselbergs, Kraaijeveld, Beulens, Shu, Rallidis, Pedersen, Hansen, Mitchell, Hewitt, Kähönen, Pérusse, Bouchard, Tönjes, Chen, Pennell, Mori, Lieb, Franke, Ohlsson, Mellström, Cho, Lee, Yuan, Koh, Rhee, Woo, Heid, Stark, Völzke, Homuth, Evans, Zonderman, Polasek, Pasterkamp and Hoefer2021; Choudhury et al., Reference Choudhury, Brandenburg, Chikowore, Sengupta, Boua, Crowther, Agongo, Asiki, Gómez-Olivé, Kisiangani, Maimela, Masemola-Maphutha, Micklesfield, Nonterah, Norris, Sorgho, Tinto, Tollman, Graham, Willer, Hazelhurst, Ramsay, study and Consortium2022; Kamiza et al., Reference Kamiza, Toure, Vujkovic, Machipisa, Soremekun, Kintu, Corpas, Pirie, Young, Gill, Sandhu, Kaleebu, Nyirenda, Motala, Chikowore and Fatumo2022). Moreover, the consideration of Africa as a homogenous group in PRS evaluation might, at times, be misleading in cases as for lipid traits, as the same PRS model might have very different performance in different African geographic regions (Graham et al., Reference Graham, Clarke, Wu, Kanoni, Zajac, Ramdas, Surakka, Ntalla, Vedantam, Winkler, Locke, Marouli, Hwang, Han, Narita, Choudhury, Bentley, Ekoru, Verma, Trivedi, Martin, Hunt, Hui, Klarin, Zhu, Thorleifsson, Helgadottir, Gudbjartsson, Holm, Olafsson, Akiyama, Sakaue, Terao, Kanai, Zhou, Brumpton, Rasheed, Ruotsalainen, Havulinna, Veturi, Feng, Rosenthal, Lingren, Pacheco, Pendergrass, Haessler, Giulianini, Bradford, Miller, Campbell, Lin, Millwood, Hindy, Rasheed, Faul, Zhao, Weir, Turman, Huang, Graff, Mahajan, Brown, Zhang, Yu, Schmidt, Pandit, Gustafsson, Yin, Luan, Zhao, Matsuda, Jang, Yoon, Medina-Gomez, Pitsillides, Hottenga, Willemsen, Wood, Ji, Gao, Haworth, Mitchell, Chai, Aadahl, Yao, Manichaikul, Warren, Ramirez, Bork-Jensen, Kårhus, Goel, Sabater-Lleal, Noordam, Sidore, Fiorillo, McDaid, Marques-Vidal, Wielscher, Trompet, Sattar, Møllehave, Thuesen, Munz, Zeng, Huang, Yang, Poveda, Kurbasic, Lamina, Forer, Scholz, Galesloot, Bradfield, Daw, Zmuda, Mitchell, Fuchsberger, Christensen, Brody, Feitosa, Wojczynski, Preuss, Mangino, Christofidou, Verweij, Benjamins, Engmann, Kember, Slieker, Lo, Zilhao, Le, Kleber, Delgado, Huo, Ikeda, Iha, Yang, Liu, Leonard, Marten, Schmidt, Arendt, Smyth, Cañadas-Garre, Wang, Nakatochi, Wong, Hutri-Kähönen, Sim, Xia, Huerta-Chagoya, Fernandez-Lopez, Lyssenko, Ahmed, Jackson, Irvin, Oldmeadow, Kim, Ryu, Timmers, Arbeeva, Dorajoo, Lange, Chai, Prasad, Lorés-Motta, Pauper, Long, Li, Theusch, Takeuchi, Spracklen, Loukola, Bollepalli, Warner, Wang, Wei, Nutile, Ruggiero, Sung, Hung, Chen, Liu, Yang, Kentistou, Gorski, Brumat, Meidtner, Bielak, Smith, Hebbar, Farmaki, Hofer, Lin, Xue, Zhang, Concas, Vaccargiu, Most, Pitkänen, Cade, Lee, Laan, Chitrala, Weiss, Zimmermann, Lee, Choi, Nethander, Freitag-Wolf, Southam, Rayner, Wang, Lin, Wang, Couture, Lyytikäinen, Nikus, Cuellar-Partida, Vestergaard, Hildalgo, Giannakopoulou, Cai, Obura, Setten, Li, Schwander, Terzikhan, Shin, Jackson, Reiner, Martin, Chen, Li, Highland, Young, Kawaguchi, Thiery, Bis, Nadkarni, Launer, Li, Nalls, Raitakari, Ichihara, Wild, Nelson, Campbell, Jäger, Nabika, Al-Mulla, Niinikoski, Braund, Kolcic, Kovacs, Giardoglou, Katsuya, Bhatti, Kleijn, Borst, Kim, Adams, Ikram, Zhu, Asselbergs, Kraaijeveld, Beulens, Shu, Rallidis, Pedersen, Hansen, Mitchell, Hewitt, Kähönen, Pérusse, Bouchard, Tönjes, Chen, Pennell, Mori, Lieb, Franke, Ohlsson, Mellström, Cho, Lee, Yuan, Koh, Rhee, Woo, Heid, Stark, Völzke, Homuth, Evans, Zonderman, Polasek, Pasterkamp and Hoefer2021; Kamiza et al., Reference Kamiza, Toure, Vujkovic, Machipisa, Soremekun, Kintu, Corpas, Pirie, Young, Gill, Sandhu, Kaleebu, Nyirenda, Motala, Chikowore and Fatumo2022). T2DM PRSs have been widely developed in European populations (Vassy et al., Reference Vassy, Durant, Kabagambe, Carnethon, Rasmussen-Torvik, Fornage, Lewis, Siscovick and Meigs2012a; Walford et al., Reference Walford, Green, Neale, Isakova, Rotter, Grant, Fox, Pankow, Wilson, Meigs, Siscovick, Bowden, Daly and Florez2012) with evidence of high predictive utility beyond that of established risk factors, yet other populations experience higher rates of T2DM incidence. Trans-ancestry PRSs have recently been constructed for T2DM, integrating data from European, African, Hispanic and East Asian populations, with the top 2% of this PRS distribution identifying individuals with a 2.5–4.5-fold increased risk of developing T2D (Ge et al., Reference Ge, Irvin, Patki, Srinivasasainagendra, Lin, Tiwari, Armstrong, Benoit, Chen, Choi, Cimino, Davis, Dikilitas, Etheridge, Feng, Gainer, Huang, Jarvik, Kachulis, Kenny, Khan, Kiryluk, Kottyan, Kullo, Lange, Lennon, Leong, Malolepsza, Miles, Murphy, Namjou, Narayan, O’Connor, Pacheco, Perez, Rasmussen-Torvik, Rosenthal, Schaid, Stamou, Udler, Wei, Weiss, Ng, Smoller, Lebo, Meigs, Limdi and Karlson2022). A major limitation of the clinical utility of PRS in diverse populations is uncertainty in how best to accurately combine multi-ancestry GWAS data. Trans-ancestry PRSs do not incorporate population-specific allele frequency and LD patterns, and training PRS separately in each ancestry is complicated by discrepancies between self-reported ethnicity and genetic ancestry (Wilson et al., Reference Wilson, Weale, Smith, Gratrix, Fletcher, Thomas, Bradman and Goldstein2001). These limitations can be addressed by expanding data sources of non-European ancestries and conducting larger GWASs in these populations.

Mendelian randomisation studies

In this review, we previously described ancestral differences in cardiometabolic risk factors and CVD incidence that have been explored in observational settings. However, observational data are prone to confounding and reverse causation, which limits the ability to make causal inferences about the role of risk factors in CVD occurrence and progression. Mendelian randomisation (MR) studies help overcome these limitations by using genetic variants as proxies for exposures (risk factors) to study their effects on outcomes (diseases). Given the relative paucity of GWAS data in non-European populations, relatively few MR studies have been conducted in non-European ancestries, thereby hindering our understanding of the causal role of risk factors in disease pathogenesis in different ancestries. Yet, findings from ancestry-specific MR studies can provide substantial insights into disease mechanisms. This is exemplified in a recent study by Fatumo et al. (Reference Fatumo, Karhunen, Chikowore, Sounkou, Udosen, Ezenwa, Nakabuye, Soremekun, Daghlas, Ryan, Taylor, Mason, Damrauer, Vujkovic, Keene, Fornage, Järvelin, Burgess and Gill2021), who investigated the causal effects of T2DM liability and lipid traits on ischaemic stroke risk in African ancestry populations. Their findings highlighted causal effects of T2DM and lipid traits on stroke risk for African ancestry individuals, the estimates of which were similar in European populations. Similarly, Soremekun et al. (Reference Soremekun, Karhunen, He, Rajasundaram, Liu, Gkatzionis, Soremekun, Udosen, Musa, Silva, Kintu, Mayanja, Nakabuye, Machipisa, Mason, Vujkovic, Zuber, Soliman, Mugisha, Nash, Kaleebu, Nyirenda, Chikowore, Nitsch, Burgess, Gill and Fatumo2022) investigated the relationship between dyslipidaemia and T2DM in African ancestry individuals. Zheng et al. (Reference Zheng, Zhang, Rasheed, Walker, Sugawara, Li, Leng, Elsworth, Wootton, Fang, Yang, Burgess, Haycock, Borges, Cho, Carnegie, Howell, Robinson, Thomas, Brumpton, Hveem, Hallan, Franceschini, Morris, Köttgen, Pattaro, Wuttke, Yamamoto, Kashihara, Akiyama, Kanai, Matsuda, Kamatani, Okada, Walters, Millwood, Chen, Davey, Barbour, Yu, Åsvold, Zhang and Gaunt2022) showed that the causal relationship between cardiometabolic risk factors and chronic kidney disease (CKD) may vary between Europeans and East Asian ancestry individuals. While eight cardiometabolic risk factors, including BMI, T2DM, nephrolithiasis and lipid biomarkers, showed causal effects on CKD in Europeans, only BMI, T2DM and nephrolithiasis showed evidence of causality in East Asians. It remains unclear, however, how much of this discrepancy can be explained by varying statistical power available for analyses across ancestry groups.

Gene–environment interactions

Disease pathogenesis is a result of the interactions between information coded in the DNA and environmental factors (Zerba and Sing, Reference Zerba and Sing1993). Gene–environment interactions exist for almost every polygenic disease, including CVD (Ordovas and Shen, Reference Ordovas and Shen2008; Andreasen and Andersen, Reference Andreasen and Andersen2009; Andreassi, Reference Andreassi2009; Hirvonen, Reference Hirvonen2009). The study of gene–environment interactions can provide additional insight into disease pathogenesis and can help determine the public health impact of risk factors, thus informing public health policy (Zerba et al., Reference Zerba, Ferrell and Sing1996, Reference Zerba, Ferrell and Sing2000). Accounting for gene–environment interactions in GWASs can improve our understanding of genetic heterogeneity under different environmental exposures (Zhao et al., Reference Zhao, Marceau, Zhang and Tzeng2015). To identify adiposity loci whose effects are mediated by physical activities, Graff et al. (Reference Graff, Scott, Justice, Young, Feitosa, Barata, Winkler, Chu, Mahajan, Hadley, Xue, Workalemahu, Heard-Costa, Hoed, Ahluwalia, Qi, Ngwa, Renström, Quaye, Eicher, Hayes, Cornelis, Kutalik, Lim, Luan, Huffman, Zhang, Zhao, Griffin, Haller, Ahmad, Marques-Vidal, Bien, Yengo, Teumer, Smith, Kumari, Harder, Justesen, Kleber, Hollensted, Lohman, Rivera, Whitfield, Zhao, Stringham, Lyytikäinen, Huppertz, Willemsen, Peyrot, Wu, Kristiansson, Demirkan, Fornage, Hassinen, Bielak, Cadby, Tanaka, Mägi, Most, Jackson, Bragg-Gresham, Vitart, Marten, Navarro, Bellis, Pasko, Johansson, Snitker, Cheng, Eriksson, Lim, Aadahl, Adair, Amin, Balkau, Auvinen, Beilby, Bergman, Bergmann, Bertoni, Blangero, Bonnefond, Bonnycastle, Borja, Brage, Busonero, Buyske, Campbell, Chines, Collins, Corre, Smith, Delgado, Dueker, Dörr, Ebeling, Eiriksdottir, Esko, Faul, Fu, Færch, Gieger, Gläser, Gong, Gordon-Larsen, Grallert, Grammer, Grarup, Grootheest, Harald, Hastie, Havulinna, Hernandez, Hindorff, Hocking, Holmens, Holzapfel, Hottenga, Huang, Huang, Hui, Huth, Hutri-Kähönen, James, Jansson, Jhun, Juonala, Kinnunen, Koistinen, Kolcic, Komulainen, Kuusisto, Kvaløy, Kähönen, Lakka, Launer, Lehne, Lindgren, Lorentzon, Luben, Marre, Milaneschi, Monda, Montgomery, Moor, Mulas, Müller-Nurasyid, Musk, Männikkö, Männistö, Narisu, Nauck, Nettleton, Nolte, Oldehinkel, Olden, Ong, Padmanabhan, Paternoster, Perez, Perola, Peters, Peters, Peyser, Prokopenko, Puolijoki, Raitakari, Rankinen, Rasmussen-Torvik, Rawal, Ridker, Rose, Rudan, Sarti, Sarzynski, Savonen, Scott, Sanna, Shuldiner, Sidney, Silbernagel, Smith, Smith, Snieder, Stančáková, Sternfeld, Swift, Tammelin, Tan, Thorand, Thuillier, Vandenput, Vestergaard, Vliet-Ostaptchouk, Vohl, Völker, Waeber, Walker, Wild, Wong, Wright, Zillikens, Zubair, Haiman, Lemarchand, Gyllensten, Ohlsson, Hofman, Rivadeneira, Uitterlinden, Pérusse, Wilson, Hayward, Polasek, Cucca, Hveem, Hartman, Tönjes, Bandinelli, Palmer, Kardia, Rauramaa, Sørensen, Tuomilehto, Salomaa, Penninx, Geus, Boomsma, Lehtimäki, Mangino, Laakso, Bouchard, Martin, Kuh, Liu, Linneberg, März, Strauch, Kivimäki, Harris, Gudnason, Völzke, Qi, Järvelin, Chambers, Kooner, Froguel, Kooperberg, Vollenweider, Hallmans, Hansen, Pedersen, Metspalu, Wareham, Langenberg, Weir, Porteous, Boerwinkle, Chasman, Consortium, Consortium, Consortium, Abecasis, Barroso, McCarthy, Frayling, O’Connell, Duijn, Boehnke, Heid, Mohlke, Strachan, Fox, Liu, Hirschhorn, Klein, Johnson, Borecki, Franks, North, Cupples, Loos and Kilpeläinen2017) undertook a meta-analysis of BMI and BMI-adjusted waist circumference and waist–hip ratio in Europeans and non-European individuals. They found an interaction with physical activity and FTO gene, and also discovered 11 novel loci for adiposity. As another example, Hindy et al. (Reference Hindy, Ericson, Hamrefors, Drake, Wirfält, Melander and Orho-Melander2014) found that the increased risk of CVD mediated by rs4977574 is modified by vegetable and wine intake.

Fairness, bias and future perspectives

As recently as 2019, it was estimated that 72% of GWAS participants were recruited in just three countries: the United States, the United Kingdom and Iceland (Peterson et al., Reference Peterson, Kuchenbaecker, Walters, Chen, Popejoy, Periyasamy, Lam, Iyegbe, Strawbridge, Brick, Carey, Martin, Meyers, Su, Chen, Edwards, Kalungi, Koen, Majara, Schwarz, Smoller, Stahl, Sullivan, Vassos, Mowry, Prieto, Cuellar-Barboza, Bigdeli, Edenberg, Huang and Duncan2019) Accordingly, there is an imperative to increase representation of non-European ancestries in large cross-ancestry GWAS’ conducted in Europe and North America, and to conduct large-scale CVD GWAS’ in developing countries, where the age-standardised death rate attributable to CVD is increasing rapidly (Roth et al., Reference Roth, Mensah, Johnson, Addolorato, Ammirati, Baddour, Barengo, Beaton, Benjamin, Benziger, Bonny, Brauer, Brodmann, Cahill, Carapetis, Catapano, Chugh, Cooper, Coresh, Criqui, DeCleene, Eagle, Emmons-Bell, Feigin, Fernández-Solà, Fowkes, Gakidou, Grundy, He, Howard, Hu, Inker, Karthikeyan, Kassebaum, Koroshetz, Lavie, Lloyd-Jones, Lu, Mirijello, Temesgen, Mokdad, Moran, Muntner, Narula, Neal, Ntsekhe, Moraes, Otto, Owolabi, Pratt, Rajagopalan, Reitsma, Ribeiro, Rigotti, Rodgers, Sable, Shakil, Sliwa-Hahnle, Stark, Sundström, Timpel, Tleyjeh, Valgimigli, Vos, Whelton, Yacoub, Zuhlke, Murray and Fuster2020). Academics in lower resource settings must be empowered if we are to seriously address such stark selection bias. Greater collaboration between those institutions in which large-scale genomic methods are most established and those institutions best placed to recruit underrepresented populations will be critical. The allocation of research funding should also give more explicit consideration to ancestry-related disparities in recruitment.

As outlined in this review, an inadequate understanding of genetic heterogeneity across ancestries may exacerbate existing inequalities in CVD outcomes. A lack of appreciation of differences in drug responsiveness may lead to individuals from certain ancestries being prescribed less effective medications. The absence of diverse ancestry information in PRSs can lead to poor prediction of disease in non-European ancestry populations. The preferential application of novel genetic methods such as MR in European ancestry populations could lead to the licencing of treatments for which the evidence base in other ancestries is extrapolative, uncertain and ultimately less efficacious or safe.

We illustrate some of these considerations with the following example. Hypertension is much more prevalent in African ancestry individuals (Spence and Rayner, Reference Spence and Rayner2018). According to the NICE guidelines, first-line antihypertensive agents differ for African ancestry individuals, with a preference for calcium channel blockers or diuretics over ACE inhibitors, given the relatively weaker response to the latter (Sinnott et al., Reference Sinnott, Douglas, Smeeth, Williamson and Tomlinson2020). The risk of stroke in hypertensive African ancestry individuals is three times greater than that of hypertensive Europeans (Spence and Rayner, Reference Spence and Rayner2018). An absence of any appreciation of genetic heterogeneity across ancestries could easily result in, and indeed may partly explain, the well-documented disparity in stroke outcomes between African ancestry and European ancestry individuals (Stansbury et al., Reference Stansbury, Jia, Williams, Vogel and Duncan2005) Conversely, an understanding of such genetic heterogeneity can produce an appropriately higher index of suspicion of hypertension in African ancestry individuals, a tailored approach to treating and managing their hypertension and ultimately and an improvement in stroke-related disability in such individuals. Furthermore, genes such as LRP1, which are selectively associated with stroke in African ancestry individuals, could be both incorporated to improve stroke PRS and investigated as a novel target for the treatment of stroke, specifically in African ancestry individuals.

Conclusions

In this review, we highlight and discuss the growing appreciation of genetic heterogeneity across ancestries in the development and progression of CVD. By elucidating such heterogeneity, we can better identify those molecular mechanisms that are common across different ancestries and those that are specific to certain ancestries. An understanding of such heterogeneity can facilitate the practice of precision medicine in three key ways. First, we can incorporate such heterogeneity to improve the clinical utility of PRSs in population risk stratification and primary prevention of CVD. Second, we can better understand how ancestry can produce differences in drug responsiveness, which can inform prescribing practises. Third, we can leverage tools such as MR to therapeutically target those mechanisms causally driving CVD both within and across ancestries.

Open peer review

To view the open peer review materials for this article, please visit http://doi.org/10.1017/pcm.2022.13.

Data availability statement

All data used are publicly available and cited in the article.

Acknowledgement

The authors would like to thank Ananyo Choudhury for providing helpful comments on an earlier draft of this review.

Author contributions

O.S., M.-J.D., S.R. and D.G. drafted the manuscript. All authors revised the manuscript for intellectual content. All authors approved the final version.

Financial support

O.S. is supported by the Africa Research Excellence Fund (AREF-325-SORE-F-C0904). S.F. is supported by the Wellcome Trust grant (220740/Z/20/Z) at the MRC/UVRI and LSHTM. D.G. is supported by the British Heart Foundation Centre of Research Excellence at Imperial College London (RE/18/4/34215).

Competing interest

D.G. is employed part-time by Novo Nordisk outside the submitted work. The remaining authors declare no relevant competing interest.

Ethics standards

This review article is based on published work, and no ethical approval was sought.

Footnotes

O.S. and M.-J.D. contributed equally and are joint first authors.

References

Ali, SA, Soo, C, Agongo, G, Alberts, M, Amenga-Etego, L, Boua, RP, Choudhury, A, Crowther, NJ, Depuur, C, Gómez-Olivé, FX, Guiraud, I, Haregu, TN, Hazelhurst, S, Kahn, K, Khayeka-Wandabwa, C, Kyobutungi, C, Lombard, Z, Mashinya, F, Micklesfield, L, Mohamed, SF, Mukomana, F, Nakanabo-Diallo, S, Natama, HM, Ngomi, N, Nonterah, EA, Norris, SA, Oduro, AR, Somé, AM, Sorgho, H, Tindana, P, Tinto, H, Tollman, S, Twine, R, Wade, A, Sankoh, O and Ramsay, M (2018) Genomic and environmental risk factors for cardiometabolic diseases in Africa: Methods used for Phase 1 of the AWI-Gen population cross-sectional study. Global Health Action 11(sup2), 1507133. https://doi.org/10.1080/16549716.2018.1507133.CrossRefGoogle ScholarPubMed
Andreasen, CH and Andersen, G (2009) Gene–environment interactions and obesity – Further aspects of genomewide association studies. Nutrition (Burbank, Los Angeles County, Calif.) 25(10), 9981003. https://doi.org/10.1016/j.nut.2009.06.001.CrossRefGoogle ScholarPubMed
Andreassi, MG (2009) Metabolic syndrome, diabetes and atherosclerosis: Influence of gene-environment interaction. Mutation Research 667(1–2), 3543. https://doi.org/10.1016/j.mrfmmm.2008.10.018.CrossRefGoogle ScholarPubMed
Atutornu, J, Milne, R, Costa, A, Patch, C and Middleton, A (2022) Towards equitable and trustworthy genomics research. eBioMedicine 76, 103879. https://doi.org/10.1016/j.ebiom.2022.103879.CrossRefGoogle ScholarPubMed
Benjamin, EJ, Blaha, MJ, Chiuve, SE, Cushman, M, Das, SR, Deo, R, de Ferranti, SD, Floyd, J, Fornage, M, Gillespie, C, Isasi, CR, Jiménez, MC, Jordan, LC, Judd, SE, Lackland, D, Lichtman, JH, Lisabeth, L, Liu, S, Longenecker, CT, Mackey, RH, Matsushita, K, Mozaffarian, D, Mussolino, ME, Nasir, K, Neumar, RW, Palaniappan, L, Pandey, DK, Thiagarajan, RR, Reeves, MJ, Ritchey, M, Rodriguez, CJ, Roth, GA, Rosamond, WD, Sasson, C, Towfighi, A, Tsao, CW, Turner, MB, Virani, SS, Voeks, JH, Willey, JZ, Wilkins, JT, Wu, JHY, Alger, HM, Wong, SS and Muntner, P (2017) Heart disease and stroke statistics – 2017 update: A report from the American Heart Association. Circulation 135(10), e146e603. https://doi.org/10.1161/CIR.0000000000000485.CrossRefGoogle ScholarPubMed
Bentley, AR, Callier, S and Rotimi, CN (2017) Diversity and inclusion in genomic research: Why the uneven progress? Journal of Community Genetics 8(4), 255266. https://doi.org/10.1007/s12687-017-0316-6.CrossRefGoogle ScholarPubMed
Berger, K, Stögbauer, F, Stoll, M, Wellmann, J, Huge, A, Cheng, S, Kessler, C, John, U, Assmann, G, Ringelstein, EB and Funke, H (2007) The glu298asp polymorphism in the nitric oxide synthase 3 gene is associated with the risk of ischemic stroke in two large independent case–control studies. Human Genetics 121(2), 169178. https://doi.org/10.1007/s00439-006-0302-2.CrossRefGoogle ScholarPubMed
Beta-Blocker Evaluation of Survival Trial Investigators, Eichhorn, EJ, Domanski, MJ, Krause-Steinrauf, H, Bristow, MR and Lavori, PW (2001) A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. New England Journal of Medicine 344(22), 16591667. https://doi.org/10.1056/NEJM200105313442202.Google ScholarPubMed
Bhaskaran, K, Douglas, I, Forbes, H, dos-Santos-Silva, I, Leon, DA and Smeeth, L (2014) Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5·24 million UK adults. The Lancet 384(9945), 755765. https://doi.org/10.1016/S0140-6736(14)60892-8.CrossRefGoogle ScholarPubMed
Boles, A, Kandimalla, R and Reddy, PH (2017) Dynamics of diabetes and obesity: Epidemiological perspective. Biochimica et Biophysica Acta. Molecular Basis of Disease 1863(5), 10261036. https://doi.org/10.1016/j.bbadis.2017.01.016.CrossRefGoogle ScholarPubMed
Bomprezzi, R, Kovanen, PE and Martin, R (2003) New approaches to investigating heterogeneity in complex traits. Journal of Medical Genetics 40(8), 553559. https://doi.org/10.1136/jmg.40.8.553.CrossRefGoogle ScholarPubMed
Bornachea, O, Benitez-Amaro, A, Vea, A, Nasarre, L, de Gonzalo-Calvo, D, Escola-Gil, JC, Cedo, L, Iborra, A, Martínez-Martínez, L, Juarez, C, Camara, JA, Espinet, C, Borrell-Pages, M, Badimon, L, Castell, J and Llorente-Cortés, V (2020) Immunization with the Gly(1127)-Cys(1140) amino acid sequence of the LRP1 receptor reduces atherosclerosis in rabbits. Molecular, immunohistochemical and nuclear imaging studies. Theranostics 10(7), 32633280. https://doi.org/10.7150/thno.37305.CrossRefGoogle Scholar
Carson, P, Ziesche, S, Johnson, G, Cohn, JN and Vasodilator-Heart Failure Trial Study Group (1999) Racial differences in response to therapy for heart failure: Analysis of the vasodilator-heart failure trials. Journal of Cardiac Failure 5(3), 178187. https://doi.org/10.1016/s1071-9164(99)90001-5.CrossRefGoogle ScholarPubMed
Cazzola, M, Calzetta, L, Matera, MG, Hanania, NA and Rogliani, P (2018) How does race/ethnicity influence pharmacological response to asthma therapies? Expert Opinion on Drug Metabolism & Toxicology 14(4), 435446. https://doi.org/10.1080/17425255.2018.1449833.CrossRefGoogle Scholar
Chan, MY, Tan, K, Tan, H-C, Huan, P-T, Li, B, Phua, Q-H, Lee, H-K, Lee, C-H, Low, A, Becker, RC, Ong, W-C, Richards, MA, Salim, A, Tai, E-S and Koay, E (2012) CYP2C19 and PON1 polymorphisms regulating clopidogrel bioactivation in Chinese, Malay and Indian subjects. Pharmacogenomics 13(5), 533542. https://doi.org/10.2217/pgs.12.24.CrossRefGoogle ScholarPubMed
Chang, M, Yesupriya, A, Ned, RM, Mueller, PW and Dowling, NF (2010) Genetic variants associated with fasting blood lipids in the U.S. population: Third National Health and Nutrition Examination Survey. BMC Medical Genetics 11, 62. Available at https://stacks.cdc.gov/view/cdc/3414.CrossRefGoogle ScholarPubMed
Chauhan, G and Debette, S (2016) Genetic risk factors for ischemic and hemorrhagic stroke. Current Cardiology Reports 18(12), 124. https://doi.org/10.1007/s11886-016-0804-z.CrossRefGoogle ScholarPubMed
Chen, J, Su, Y, Pi, S, Hu, B and Mao, L (2021) The dual role of low-density lipoprotein receptor-related protein 1 in atherosclerosis. Frontiers in Cardiovascular Medicine 8, 682389. https://doi.org/10.3389/fcvm.2021.682389.CrossRefGoogle ScholarPubMed
Chen, R, Corona, E, Sikora, M, Dudley, JT, Morgan, AA, Moreno-Estrada, A, Nilsen, GB, Ruau, D, Lincoln, SE, Bustamante, CD and Butte, AJ (2012) Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases. PLoS Genetics 8(4), e1002621. https://doi.org/10.1371/journal.pgen.1002621.CrossRefGoogle ScholarPubMed
Choudhury, A, Brandenburg, J-T, Chikowore, T, Sengupta, D, Boua, PR, Crowther, NJ, Agongo, G, Asiki, G, Gómez-Olivé, FX, Kisiangani, I, Maimela, E, Masemola-Maphutha, M, Micklesfield, LK, Nonterah, EA, Norris, SA, Sorgho, H, Tinto, H, Tollman, S, Graham, SE, Willer, CJ, Hazelhurst, S, Ramsay, M, study, A-G and Consortium, H (2022) Meta-analysis of sub-Saharan African studies provides insights into genetic architecture of lipid traits. Nature Communications 13(1), 2578. https://doi.org/10.1038/s41467-022-30098-w.CrossRefGoogle ScholarPubMed
Cohn, JN, Julius, S, Neutel, J, Weber, M, Turlapaty, P, Shen, Y, Dong, V, Batchelor, A, Guo, W and Lagast, H (2004) Clinical experience with perindopril in African-American hypertensive patients: A large United States community trial. American Journal of Hypertension 17(2), 134138. https://doi.org/10.1016/j.amjhyper.2003.09.017.CrossRefGoogle ScholarPubMed
Costales, P, Fuentes-Prior, P, Castellano, J, Revuelta-Lopez, E, Corral-Rodríguez, , Nasarre, L, Badimon, L and Llorente-Cortes, V (2015) K domain CR9 of low density lipoprotein (LDL) receptor-related protein 1 (LRP1) is critical for aggregated LDL-induced foam cell formation from human vascular smooth muscle cells. The Journal of Biological Chemistry 290(24), 1485214865. https://doi.org/10.1074/jbc.M115.638361.CrossRefGoogle ScholarPubMed
Crowther, NJ, Ferris, WF, Ojwang, PJ and Rheeder, P (2006) The effect of abdominal obesity on insulin sensitivity and serum lipid and cytokine concentrations in African women. Clinical Endocrinology 64(5), 535541. https://doi.org/10.1111/j.1365-2265.2006.02505.x.CrossRefGoogle ScholarPubMed
Dendup, T, Feng, X, Clingan, S and Astell-Burt, T (2018) Environmental risk factors for developing type 2 diabetes mellitus: A systematic review. International Journal of Environmental Research and Public Health 15(1). https://doi.org/10.3390/ijerph15010078.CrossRefGoogle ScholarPubMed
Downie, CG, Dimos, SF, Bien, SA, Hu, Y, Darst, BF, Polfus, LM, Wang, Y, Wojcik, GL, Tao, R, Raffield, LM, Armstrong, ND, Polikowsky, HG, Below, JE, Correa, A, Irvin, MR, Rasmussen-Torvik, LJF, Carlson, CS, Phillips, LS, Liu, S, Pankow, JS, Rich, SS, Rotter, JI, Buyske, S, Matise, TC, North, KE, Avery, CL, Haiman, CA, Loos, RJF, Kooperberg, C, Graff, M and Highland, HM (2022) Multi-ethnic GWAS and fine-mapping of glycaemic traits identify novel loci in the PAGE study. Diabetologia 65(3), 477489. https://doi.org/10.1007/s00125-021-05635-9.CrossRefGoogle ScholarPubMed
Dries, DL, Strong, MH, Cooper, RS and Drazner, MH (2002) Efficacy of angiotensin-converting enzyme inhibition in reducing progression from asymptomatic left ventricular dysfunction to symptomatic heart failure in black and white patients. Journal of the American College of Cardiology 40(2), 311317. https://doi.org/10.1016/s0735-1097(02)01943-5.CrossRefGoogle ScholarPubMed
Ehret, GB, Ferreira, T, Chasman, DI, Jackson, AU, Schmidt, EM, Johnson, T, Thorleifsson, G, Luan, J, Donnelly, LA, Kanoni, S, Petersen, A-K, Pihur, V, Strawbridge, RJ, Shungin, D, Hughes, MF, Meirelles, O, Kaakinen, M, Bouatia-Naji, N, Kristiansson, K, Shah, S, Kleber, ME, Guo, X, Lyytikäinen, L-P, Fava, C, Eriksson, N, Nolte, IM, Magnusson, PK, Salfati, EL, Rallidis, LS, Theusch, E, Smith, AJP, Folkersen, L, Witkowska, K, Pers, TH, Joehanes, R, Kim, SK, Lataniotis, L, Jansen, R, Johnson, AD, Warren, H, Kim, YJ, Zhao, W, Wu, Y, Tayo, BO, Bochud, M, Absher, D, Adair, LS, Amin, N, Arking, DE, Axelsson, T, Baldassarre, D, Balkau, B, Bandinelli, S, Barnes, MR, Barroso, I, Bevan, S, Bis, JC, Bjornsdottir, G, Boehnke, M, Boerwinkle, E, Bonnycastle, LL, Boomsma, DI, Bornstein, SR, Brown, MJ, Burnier, M, Cabrera, CP, Chambers, JC, Chang, I-S, Cheng, C-Y, Chines, PS, Chung, R-H, Collins, FS, Connell, JM, Döring, A, Dallongeville, J, Danesh, J, Faire, U de, Delgado, G, Dominiczak, AF, Doney, ASF, Drenos, F, Edkins, S, Eicher, JD, Elosua, R, Enroth, S, Erdmann, J, Eriksson, P, Esko, T, Evangelou, E, Evans, A, Fall, T, Farrall, M, Felix, JF, Ferrières, J, Ferrucci, L, Fornage, M, Forrester, T, Franceschini, N, Duran, OHF, Franco-Cereceda, A, Fraser, RM, Ganesh, SK, Gao, H, Gertow, K, Gianfagna, F, Gigante, B, Giulianini, F, Goel, A, Goodall, AH, Goodarzi, MO, Gorski, M, Gräßler, J, Groves, C, Gudnason, V, Gyllensten, U, Hallmans, G, Hartikainen, A-L, Hassinen, M, Havulinna, AS, Hayward, C, Hercberg, S, Herzig, K-H, Hicks, AA, Hingorani, AD, Hirschhorn, JN, Hofman, A, Holmen, J, Holmen, OL, Hottenga, J-J, Howard, P, Hsiung, CA, Hunt, SC, Ikram, MA, Illig, T, Iribarren, C, Jensen, RA, Kähönen, M, Kang, H, Kathiresan, S, Keating, BJ, Khaw, K-T, Kim, YK, Kim, E, Kivimaki, M, Klopp, N, Kolovou, G, Komulainen, P, Kooner, JS, Kosova, G, Krauss, RM, Kuh, D, Kutalik, Z, Kuusisto, J, Kvaløy, K, Lakka, TA, Lee, NR, Lee, I-T, Lee, W-J, Levy, D, Li, X, Liang, K-W, Lin, H, Lin, L, Lindström, J, Lobbens, S, Männistö, S, Müller, G, Müller-Nurasyid, M, Mach, F, Markus, HS, Marouli, E, McCarthy, MI, McKenzie, CA, Meneton, P, Menni, C, Metspalu, A, Mijatovic, V, Moilanen, L, Montasser, ME, Morris, AD, Morrison, AC, Mulas, A, Nagaraja, R, Narisu, N, Nikus, K, O’Donnell, CJ, O’Reilly, PF, Ong, KK, Paccaud, F, Palmer, CD, Parsa, A, Pedersen, NL, Penninx, BW, Perola, M, Peters, A, Poulter, N, Pramstaller, PP, Psaty, BM, Quertermous, T, Rao, DC, Rasheed, A, Rayner, NWNWR, Renström, F, Rettig, R, Rice, KM, Roberts, R, Rose, LM, Rossouw, J, Samani, NJ, Sanna, S, Saramies, J, Schunkert, H, Sebert, S, Sheu, WH-H, Shin, Y-A, Sim, X, Smit, JH, Smith, A V, Sosa, MX, Spector, TD, Stančáková, A, Stanton, A, Stirrups, KE, Stringham, HM, Sundstrom, J, Swift, AJ, Syvänen, A-C, Tai, E-S, Tanaka, T, Tarasov, K V, Teumer, A, Thorsteinsdottir, U, Tobin, MD, Tremoli, E, Uitterlinden, AG, Uusitupa, M, Vaez, A, Vaidya, D, Duijn, CM van, Iperen, EPA van, Vasan, RS, Verwoert, GC, Virtamo, J, Vitart, V, Voight, BF, Vollenweider, P, Wagner, A, Wain, L V, Wareham, NJ, Watkins, H, Weder, AB, Westra, H-J, Wilks, R, Wilsgaard, T, Wilson, JF, Wong, TY, Yang, T-P, Yao, J, Yengo, L, Zhang, W, Zhao, JH, Zhu, X, Bovet, P, Cooper, RS, Mohlke, KL, Saleheen, D, Lee, J-Y, Elliott, P, Gierman, HJ, Willer, CJ, Franke, L, Hovingh, GK, Taylor, KD, Dedoussis, G, Sever, P, Wong, A, Lind, L, Assimes, TL, Njølstad, I, Schwarz, PE, Langenberg, C, Snieder, H, Caulfield, MJ, Melander, O, Laakso, M, Saltevo, J, Rauramaa, R, Tuomilehto, J, Ingelsson, E, Lehtimäki, T, Hveem, K, Palmas, W, März, W, Kumari, M, Salomaa, V, Chen, Y-DI, Rotter, JI, Froguel, P, Jarvelin, M-R, Lakatta, EG, Kuulasmaa, K, Franks, PW, Hamsten, A, Wichmann, H-E, Palmer, CNA, Stefansson, K, Ridker, PM, Loos, RJF, Chakravarti, A, Deloukas, P, Morris, AP, Newton-Cheh, C and Munroe, PB (2016) The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics 48(10), 11711184. https://doi.org/10.1038/ng.3667.CrossRefGoogle ScholarPubMed
Ehret, GB, Munroe, PB, Rice, KM, Bochud, M, Johnson, AD, Chasman, DI, Smith, A V, Tobin, MD, Verwoert, GC, Hwang, S-J, Pihur, V, Vollenweider, P, O’Reilly, PF, Amin, N, Bragg-Gresham, JL, Teumer, A, Glazer, NL, Launer, L, Zhao, JH, Aulchenko, Y, Heath, S, Sõber, S, Parsa, A, Luan, J, Arora, P, Dehghan, A, Zhang, F, Lucas, G, Hicks, AA, Jackson, AU, Peden, JF, Tanaka, T, Wild, SH, Rudan, I, Igl, W, Milaneschi, Y, Parker, AN, Fava, C, Chambers, JC, Fox, ER, Kumari, M, Go, MJ, Harst, P van der, Kao, WHL, Sjögren, M, Vinay, DG, Alexander, M, Tabara, Y, Shaw-Hawkins, S, Whincup, PH, Liu, Y, Shi, G, Kuusisto, J, Tayo, B, Seielstad, M, Sim, X, Nguyen, K-DH, Lehtimäki, T, Matullo, G, Wu, Y, Gaunt, TR, Onland-Moret, NC, Cooper, MN, Platou, CGP, Org, E, Hardy, R, Dahgam, S, Palmen, J, Vitart, V, Braund, PS, Kuznetsova, T, Uiterwaal, CSPM, Adeyemo, A, Palmas, W, Campbell, H, Ludwig, B, Tomaszewski, M, Tzoulaki, I, Palmer, ND, Aspelund, T, Garcia, M, Chang, Y-PC, O’Connell, JR, Steinle, NI, Grobbee, DE, Arking, DE, Kardia, SL, Morrison, AC, Hernandez, D, Najjar, S, McArdle, WL, Hadley, D, Brown, MJ, Connell, JM, Hingorani, AD, Day, INM, Lawlor, DA, Beilby, JP, Lawrence, RW, Clarke, R, Hopewell, JC, Ongen, H, Dreisbach, AW, Li, Y, Young, JH, Bis, JC, Kähönen, M, Viikari, J, Adair, LS, Lee, NR, Chen, M-H, Olden, M, Pattaro, C, Bolton, JAH, Köttgen, A, Bergmann, S, Mooser, V, Chaturvedi, N, Frayling, TM, Islam, M, Jafar, TH, Erdmann, J, Kulkarni, SR, Bornstein, SR, Grässler, J, Groop, L, Voight, BF, Kettunen, J, Howard, P, Taylor, A, Guarrera, S, Ricceri, F, Emilsson, V, Plump, A, Barroso, I, Khaw, K-T, Weder, AB, Hunt, SC, Sun, Y V, Bergman, RN, Collins, FS, Bonnycastle, LL, Scott, LJ, Stringham, HM, Peltonen, L, Perola, M, Vartiainen, E, Brand, S-M, Staessen, JA, Wang, TJ, Burton, PR, Soler, Artigas M, Dong, Y, Snieder, H, Wang, X, Zhu, H, Lohman, KK, Rudock, ME, Heckbert, SR, Smith, NL, Wiggins, KL, Doumatey, A, Shriner, D, Veldre, G, Viigimaa, M, Kinra, S, Prabhakaran, D, Tripathy, V, Langefeld, CD, Rosengren, A, Thelle, DS, Corsi, AM, Singleton, A, Forrester, T, Hilton, G, McKenzie, CA, Salako, T, Iwai, N, Kita, Y, Ogihara, T, Ohkubo, T, Okamura, T, Ueshima, H, Umemura, S, Eyheramendy, S, Meitinger, T, Wichmann, H-E, Cho, YS, Kim, H-L, Lee, J-Y, Scott, J, Sehmi, JS, Zhang, W, Hedblad, B, Nilsson, P, Smith, GD, Wong, A, Narisu, N, Stančáková, A, Raffel, LJ, Yao, J, Kathiresan, S, O’Donnell, CJ, Schwartz, SM, Ikram, MA, Longstreth, WTJ, Mosley, TH, Seshadri, S, Shrine, NRG, Wain, L V, Morken, MA, Swift, AJ, Laitinen, J, Prokopenko, I, Zitting, P, Cooper, JA, Humphries, SE, Danesh, J, Rasheed, A, Goel, A, Hamsten, A, Watkins, H, Bakker, SJL, Gilst, WH van, Janipalli, CS, Mani, KR, Yajnik, CS, Hofman, A, Mattace-Raso, FUS, Oostra, BA, Demirkan, A, Isaacs, A, Rivadeneira, F, Lakatta, EG, Orru, M, Scuteri, A, Ala-Korpela, M, Kangas, AJ, Lyytikäinen, L-P, Soininen, P, Tukiainen, T, Würtz, P, Ong, RT-H, Dörr, M, Kroemer, HK, Völker, U, Völzke, H, Galan, P, Hercberg, S, Lathrop, M, Zelenika, D, Deloukas, P, Mangino, M, Spector, TD, Zhai, G, Meschia, JF, Nalls, MA, Sharma, P, Terzic, J, Kumar, MVK, Denniff, M, Zukowska-Szczechowska, E, Wagenknecht, LE, Fowkes, FGR, Charchar, FJ, Schwarz, PEH, Hayward, C, Guo, X, Rotimi, C, Bots, ML, Brand, E, Samani, NJ, Polasek, O, Talmud, PJ, Nyberg, F, Kuh, D, Laan, M, Hveem, K, Palmer, LJ, Schouw, YT van der, Casas, JP, Mohlke, KL, Vineis, P, Raitakari, O, Ganesh, SK, Wong, TY, Tai, ES, Cooper, RS, Laakso, M, Rao, DC, Harris, TB, Morris, RW, Dominiczak, AF, Kivimaki, M, Marmot, MG, Miki, T, Saleheen, D, Chandak, GR, Coresh, J, Navis, G, Salomaa, V, Han, B-G, Zhu, X, Kooner, JS, Melander, O, Ridker, PM, Bandinelli, S, Gyllensten, UB, Wright, AF, Wilson, JF, Ferrucci, L, Farrall, M, Tuomilehto, J, Pramstaller, PP, Elosua, R, Soranzo, N, Sijbrands, EJG, Altshuler, D, Loos, RJF, Shuldiner, AR, Gieger, C, Meneton, P, Uitterlinden, AG, Wareham, NJ, Gudnason, V, Rotter, JI, Rettig, R, Uda, M, Strachan, DP, Witteman, JCM, Hartikainen, A-L, Beckmann, JS, Boerwinkle, E, Vasan, RS, Boehnke, M, Larson, MG, Järvelin, M-R, Psaty, BM, Abecasis, GR, Chakravarti, A, Elliott, P, Duijn, CM van, Newton-Cheh, C, Levy, D, Caulfield, MJ and Johnson, T (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367), 103109. https://doi.org/10.1038/nature10405.Google ScholarPubMed
Ellman, N, Keswell, D, Collins, M, Tootla, M and Goedecke, JH (2015) Ethnic differences in the association between lipid metabolism genes and lipid levels in black and white South African women. Atherosclerosis 240(2), 311317. https://doi.org/10.1016/j.atherosclerosis.2015.03.027.CrossRefGoogle ScholarPubMed
Exner, DV, Dries, DL, Domanski, MJ and Cohn, JN (2001) Lesser response to angiotensin-converting-enzyme inhibitor therapy in black as compared with white patients with left ventricular dysfunction. The New England Journal of Medicine 344(18), 13511357. https://doi.org/10.1056/NEJM200105033441802.CrossRefGoogle Scholar
Fatumo, S, Chikowore, T, Choudhury, A, Ayub, M, Martin, AR and Kuchenbaecker, K (2022) A roadmap to increase diversity in genomic studies. Nature Medicine 28(2), 243250. https://doi.org/10.1038/s41591-021-01672-4.CrossRefGoogle ScholarPubMed
Fatumo, S, Karhunen, V, Chikowore, T, Sounkou, T, Udosen, B, Ezenwa, C, Nakabuye, M, Soremekun, O, Daghlas, I, Ryan, DK, Taylor, A, Mason, AM, Damrauer, SM, Vujkovic, M, Keene, KL, Fornage, M, Järvelin, M-R, Burgess, S and Gill, D (2021) Metabolic traits and stroke risk in individuals of African ancestry: Mendelian randomization analysis. Stroke 52(8), 26802684. https://doi.org/10.1161/STROKEAHA.121.034747.CrossRefGoogle ScholarPubMed
Fawzy, AM and Lip, GYH (2021) Cardiovascular disease prevention: Risk factor modification at the heart of the matter. The Lancet Regional Health – Western Pacific 17, 100291. https://doi.org/10.1016/j.lanwpc.2021.100291.CrossRefGoogle ScholarPubMed
Ferrannini, E and Mari, A (2004) Beta cell function and its relation to insulin action in humans: A critical appraisal. Diabetologia 47(5), 943956. https://doi.org/10.1007/s00125-004-1381-z.CrossRefGoogle ScholarPubMed
Förstermann, U and Sessa, WC (2012) Nitric oxide synthases: Regulation and function. European Heart Journal 33(7), 829837, 837a–837d. https://doi.org/10.1093/eurheartj/ehr304.CrossRefGoogle ScholarPubMed
Ge, T, Irvin, MR, Patki, A, Srinivasasainagendra, V, Lin, Y-F, Tiwari, HK, Armstrong, ND, Benoit, B, Chen, C-Y, Choi, KW, Cimino, JJ, Davis, BH, Dikilitas, O, Etheridge, B, Feng, Y-CA, Gainer, V, Huang, H, Jarvik, GP, Kachulis, C, Kenny, EE, Khan, A, Kiryluk, K, Kottyan, L, Kullo, IJ, Lange, C, Lennon, N, Leong, A, Malolepsza, E, Miles, AD, Murphy, S, Namjou, B, Narayan, R, O’Connor, MJ, Pacheco, JA, Perez, E, Rasmussen-Torvik, LJ, Rosenthal, EA, Schaid, D, Stamou, M, Udler, MS, Wei, W-Q, Weiss, ST, Ng, MCY, Smoller, JW, Lebo, MS, Meigs, JB, Limdi, NA and Karlson, EW (2022) Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations. Genome Medicine 14(1), 70. https://doi.org/10.1186/s13073-022-01074-2.CrossRefGoogle ScholarPubMed
GBD 2017 Causes of Death Collaborators (2018) Lancet (London, England) 392(10159), 17361788. https://doi.org/10.1016/S0140-6736(18)32203-7.CrossRefGoogle Scholar
GBD 2015 Mortality and Causes of Death Collaborators (2016) Lancet (London, England) 388(10053), 14591544. https://doi.org/10.1016/S0140-6736(16)31012-1.CrossRefGoogle Scholar
Golden, SH, Yajnik, C, Phatak, S, Hanson, RL and Knowler, WC (2019) Racial/ethnic differences in the burden of type 2 diabetes over the life course: A focus on the USA and India. Diabetologia 62(10), 17511760. https://doi.org/10.1007/s00125-019-4968-0.CrossRefGoogle ScholarPubMed
Gong, Y, Wang, Z, Beitelshees, AL, McDonough, CW, Langaee, TY, Hall, K, Schmidt, SOF, Curry, RW, Gums, JG, Bailey, KR, Boerwinkle, E, Chapman, AB, Turner, ST, Cooper-DeHoff, RM and Johnson, JA (2016) Pharmacogenomic genome-wide meta-analysis of blood pressure response to β-blockers in hypertensive African Americans. Hypertension 67(3), 556563. https://doi.org/10.1161/HYPERTENSIONAHA.115.06345.CrossRefGoogle ScholarPubMed
Graff, M, Scott, RA, Justice, AE, Young, KL, Feitosa, MF, Barata, L, Winkler, TW, Chu, AY, Mahajan, A, Hadley, D, Xue, L, Workalemahu, T, Heard-Costa, NL, Hoed, M den, Ahluwalia, TS, Qi, Q, Ngwa, JS, Renström, F, Quaye, L, Eicher, JD, Hayes, JE, Cornelis, M, Kutalik, Z, Lim, E, Luan, J, Huffman, JE, Zhang, W, Zhao, W, Griffin, PJ, Haller, T, Ahmad, S, Marques-Vidal, PM, Bien, S, Yengo, L, Teumer, A, Smith, AV, Kumari, M, Harder, MN, Justesen, JM, Kleber, ME, Hollensted, M, Lohman, K, Rivera, N V, Whitfield, JB, Zhao, JH, Stringham, HM, Lyytikäinen, L-P, Huppertz, C, Willemsen, G, Peyrot, WJ, Wu, Y, Kristiansson, K, Demirkan, A, Fornage, M, Hassinen, M, Bielak, LF, Cadby, G, Tanaka, T, Mägi, R, Most, PJ van der, Jackson, AU, Bragg-Gresham, JL, Vitart, V, Marten, J, Navarro, P, Bellis, C, Pasko, D, Johansson, Å, Snitker, S, Cheng, Y-C, Eriksson, J, Lim, U, Aadahl, M, Adair, LS, Amin, N, Balkau, B, Auvinen, J, Beilby, J, Bergman, RN, Bergmann, S, Bertoni, AG, Blangero, J, Bonnefond, A, Bonnycastle, LL, Borja, JB, Brage, S, Busonero, F, Buyske, S, Campbell, H, Chines, PS, Collins, FS, Corre, T, Smith, GD, Delgado, GE, Dueker, N, Dörr, M, Ebeling, T, Eiriksdottir, G, Esko, T, Faul, JD, Fu, M, Færch, K, Gieger, C, Gläser, S, Gong, J, Gordon-Larsen, P, Grallert, H, Grammer, TB, Grarup, N, Grootheest, G van, Harald, K, Hastie, ND, Havulinna, AS, Hernandez, D, Hindorff, L, Hocking, LJ, Holmens, OL, Holzapfel, C, Hottenga, JJ, Huang, J, Huang, T, Hui, J, Huth, C, Hutri-Kähönen, N, James, AL, Jansson, J-O, Jhun, MA, Juonala, M, Kinnunen, L, Koistinen, HA, Kolcic, I, Komulainen, P, Kuusisto, J, Kvaløy, K, Kähönen, M, Lakka, TA, Launer, LJ, Lehne, B, Lindgren, CM, Lorentzon, M, Luben, R, Marre, M, Milaneschi, Y, Monda, KL, Montgomery, GW, Moor, MHM De, Mulas, A, Müller-Nurasyid, M, Musk, AW, Männikkö, R, Männistö, S, Narisu, N, Nauck, M, Nettleton, JA, Nolte, IM, Oldehinkel, AJ, Olden, M, Ong, KK, Padmanabhan, S, Paternoster, L, Perez, J, Perola, M, Peters, A, Peters, U, Peyser, PA, Prokopenko, I, Puolijoki, H, Raitakari, OT, Rankinen, T, Rasmussen-Torvik, LJ, Rawal, R, Ridker, PM, Rose, LM, Rudan, I, Sarti, C, Sarzynski, MA, Savonen, K, Scott, WR, Sanna, S, Shuldiner, AR, Sidney, S, Silbernagel, G, Smith, BH, Smith, JA, Snieder, H, Stančáková, A, Sternfeld, B, Swift, AJ, Tammelin, T, Tan, S-T, Thorand, B, Thuillier, D, Vandenput, L, Vestergaard, H, Vliet-Ostaptchouk, J V van, Vohl, M-C, Völker, U, Waeber, G, Walker, M, Wild, S, Wong, A, Wright, AF, Zillikens, MC, Zubair, N, Haiman, CA, Lemarchand, L, Gyllensten, U, Ohlsson, C, Hofman, A, Rivadeneira, F, Uitterlinden, AG, Pérusse, L, Wilson, JF, Hayward, C, Polasek, O, Cucca, F, Hveem, K, Hartman, CA, Tönjes, A, Bandinelli, S, Palmer, LJ, Kardia, SLR, Rauramaa, R, Sørensen, TIA, Tuomilehto, J, Salomaa, V, Penninx, BWJH, Geus, EJC de, Boomsma, DI, Lehtimäki, T, Mangino, M, Laakso, M, Bouchard, C, Martin, NG, Kuh, D, Liu, Y, Linneberg, A, März, W, Strauch, K, Kivimäki, M, Harris, TB, Gudnason, V, Völzke, H, Qi, L, Järvelin, M-R, Chambers, JC, Kooner, JS, Froguel, P, Kooperberg, C, Vollenweider, P, Hallmans, G, Hansen, T, Pedersen, O, Metspalu, A, Wareham, NJ, Langenberg, C, Weir, DR, Porteous, DJ, Boerwinkle, E, Chasman, DI, Consortium, C, Consortium, E-I, Consortium, P, Abecasis, GR, Barroso, I, McCarthy, MI, Frayling, TM, O’Connell, JR, Duijn, CM van, Boehnke, M, Heid, IM, Mohlke, KL, Strachan, DP, Fox, CS, Liu, C-T, Hirschhorn, JN, Klein, RJ, Johnson, AD, Borecki, IB, Franks, PW, North, KE, Cupples, LA, Loos, RJF and Kilpeläinen, TO (2017) Genome-wide physical activity interactions in adiposity – A meta-analysis of 200,452 adults. PLoS Genetics 13(4), e1006528. https://doi.org/10.1371/journal.pgen.1006528.CrossRefGoogle ScholarPubMed
Graham, SE, Clarke, SL, Wu, K-HH, Kanoni, S, Zajac, GJM, Ramdas, S, Surakka, I, Ntalla, I, Vedantam, S, Winkler, TW, Locke, AE, Marouli, E, Hwang, MY, Han, S, Narita, A, Choudhury, A, Bentley, AR, Ekoru, K, Verma, A, Trivedi, B, Martin, HC, Hunt, KA, Hui, Q, Klarin, D, Zhu, X, Thorleifsson, G, Helgadottir, A, Gudbjartsson, DF, Holm, H, Olafsson, I, Akiyama, M, Sakaue, S, Terao, C, Kanai, M, Zhou, W, Brumpton, BM, Rasheed, H, Ruotsalainen, SE, Havulinna, AS, Veturi, Y, Feng, Q, Rosenthal, EA, Lingren, T, Pacheco, JA, Pendergrass, SA, Haessler, J, Giulianini, F, Bradford, Y, Miller, JE, Campbell, A, Lin, K, Millwood, IY, Hindy, G, Rasheed, A, Faul, JD, Zhao, W, Weir, DR, Turman, C, Huang, H, Graff, M, Mahajan, A, Brown, MR, Zhang, W, Yu, K, Schmidt, EM, Pandit, A, Gustafsson, S, Yin, X, Luan, J, Zhao, J-H, Matsuda, F, Jang, H-M, Yoon, K, Medina-Gomez, C, Pitsillides, A, Hottenga, JJ, Willemsen, G, Wood, AR, Ji, Y, Gao, Z, Haworth, S, Mitchell, RE, Chai, JF, Aadahl, M, Yao, J, Manichaikul, A, Warren, HR, Ramirez, J, Bork-Jensen, J, Kårhus, LL, Goel, A, Sabater-Lleal, M, Noordam, R, Sidore, C, Fiorillo, E, McDaid, AF, Marques-Vidal, P, Wielscher, M, Trompet, S, Sattar, N, Møllehave, LT, Thuesen, BH, Munz, M, Zeng, L, Huang, J, Yang, B, Poveda, A, Kurbasic, A, Lamina, C, Forer, L, Scholz, M, Galesloot, TE, Bradfield, JP, Daw, EW, Zmuda, JM, Mitchell, JS, Fuchsberger, C, Christensen, H, Brody, JA, Feitosa, MF, Wojczynski, MK, Preuss, M, Mangino, M, Christofidou, P, Verweij, N, Benjamins, JW, Engmann, J, Kember, RL, Slieker, RC, Lo, KS, Zilhao, NR, Le, P, Kleber, ME, Delgado, GE, Huo, S, Ikeda, DD, Iha, H, Yang, J, Liu, J, Leonard, HL, Marten, J, Schmidt, B, Arendt, M, Smyth, LJ, Cañadas-Garre, M, Wang, C, Nakatochi, M, Wong, A, Hutri-Kähönen, N, Sim, X, Xia, R, Huerta-Chagoya, A, Fernandez-Lopez, JC, Lyssenko, V, Ahmed, M, Jackson, AU, Irvin, MR, Oldmeadow, C, Kim, H-N, Ryu, S, Timmers, PRHJ, Arbeeva, L, Dorajoo, R, Lange, LA, Chai, X, Prasad, G, Lorés-Motta, L, Pauper, M, Long, J, Li, X, Theusch, E, Takeuchi, F, Spracklen, CN, Loukola, A, Bollepalli, S, Warner, SC, Wang, YX, Wei, WB, Nutile, T, Ruggiero, D, Sung, YJ, Hung, Y-J, Chen, S, Liu, F, Yang, J, Kentistou, KA, Gorski, M, Brumat, M, Meidtner, K, Bielak, LF, Smith, JA, Hebbar, P, Farmaki, A-E, Hofer, E, Lin, M, Xue, C, Zhang, J, Concas, MP, Vaccargiu, S, Most, PJ van der, Pitkänen, N, Cade, BE, Lee, J, Laan, SW van der, Chitrala, KN, Weiss, S, Zimmermann, ME, Lee, JY, Choi, HS, Nethander, M, Freitag-Wolf, S, Southam, L, Rayner, NW, Wang, CA, Lin, S-Y, Wang, J-S, Couture, C, Lyytikäinen, L-P, Nikus, K, Cuellar-Partida, G, Vestergaard, H, Hildalgo, B, Giannakopoulou, O, Cai, Q, Obura, MO, Setten, J van, Li, X, Schwander, K, Terzikhan, N, Shin, JH, Jackson, RD, Reiner, AP, Martin, LW, Chen, Z, Li, L, Highland, HM, Young, KL, Kawaguchi, T, Thiery, J, Bis, JC, Nadkarni, GN, Launer, LJ, Li, H, Nalls, MA, Raitakari, OT, Ichihara, S, Wild, SH, Nelson, CP, Campbell, H, Jäger, S, Nabika, T, Al-Mulla, F, Niinikoski, H, Braund, PS, Kolcic, I, Kovacs, P, Giardoglou, T, Katsuya, T, Bhatti, KF, Kleijn, D de, Borst, GJ de, Kim, EK, Adams, HHH, Ikram, MA, Zhu, X, Asselbergs, FW, Kraaijeveld, AO, Beulens, JWJ, Shu, X-O, Rallidis, LS, Pedersen, O, Hansen, T, Mitchell, P, Hewitt, AW, Kähönen, M, Pérusse, L, Bouchard, C, Tönjes, A, Chen, Y-DI, Pennell, CE, Mori, TA, Lieb, W, Franke, A, Ohlsson, C, Mellström, D, Cho, YS, Lee, H, Yuan, J-M, Koh, W-P, Rhee, SY, Woo, J-T, Heid, IM, Stark, KJ, Völzke, H, Homuth, G, Evans, MK, Zonderman, AB, Polasek, O, Pasterkamp, G and Hoefer, IE (2021) The power of genetic diversity in genome-wide association studies of lipids. Nature 600(7890), 675679. https://doi.org/10.1038/s41586-021-04064-3.CrossRefGoogle ScholarPubMed
Gurdasani, D, Barroso, I, Zeggini, E and Sandhu, MS (2019) Genomics of disease risk in globally diverse populations. Nature Reviews Genetics 20(9), 520535. https://doi.org/10.1038/s41576-019-0144-0.CrossRefGoogle ScholarPubMed
Haffner, SM, D’Agostino, R, Saad, MF, Rewers, M, Mykkänen, L, Selby, J, Howard, G, Savage, PJ, Hamman, RF and Wagenknecht, LE (1996) Increased insulin resistance and insulin secretion in nondiabetic African-Americans and Hispanics compared with non-Hispanic whites: The Insulin Resistance Atherosclerosis Study. Diabetes 45(6), 742748. https://doi.org/10.2337/diab.45.6.742.CrossRefGoogle ScholarPubMed
Hanson, RL, Rong, R, Kobes, S, Muller, YL, Weil, EJ, Curtis, JM, Nelson, RG and Baier, LJ (2015) Role of established type 2 diabetes-susceptibility genetic variants in a high prevalence American Indian population. Diabetes 64(7), 26462657. https://doi.org/10.2337/db14-1715.CrossRefGoogle Scholar
Harriott, AM, Heckman, MG, Rayaprolu, S, Soto-Ortolaza, AI, Diehl, NN, Kanekiyo, T, Liu, C-C, Bu, G, Malik, R, Cole, JW, Meschia, JF and Ross, OA (2015) Low density lipoprotein receptor related protein 1 and 6 gene variants and ischaemic stroke risk. European Journal of Neurology 22(8), 12351241. https://doi.org/10.1111/ene.12735.CrossRefGoogle ScholarPubMed
Hemani, G, Yang, J, Vinkhuyzen, A, Powell, JE, Willemsen, G, Hottenga, J-J, Abdellaoui, A, Mangino, M, Valdes, AM, Medland, SE, Madden, PA, Heath, AC, Henders, AK, Nyholt, DR, Geus, EJC de, Magnusson, PKE, Ingelsson, E, Montgomery, GW, Spector, TD, Boomsma, DI, Pedersen, NL, Martin, NG and Visscher, PM (2013) Inference of the genetic architecture underlying BMI and height with the use of 20,240 sibling pairs. American Journal of Human Genetics 93(5), 865875. https://doi.org/10.1016/j.ajhg.2013.10.005.CrossRefGoogle ScholarPubMed
High-dose atorvastatin after stroke or transient ischemic attack (2006) New England Journal of Medicine 355(6), 549559. https://doi.org/10.1056/NEJMoa061894.CrossRefGoogle Scholar
Hindy, G, Ericson, U, Hamrefors, V, Drake, I, Wirfält, E, Melander, O and Orho-Melander, M (2014) The chromosome 9p21 variant interacts with vegetable and wine intake to influence the risk of cardiovascular disease: A population based cohort study. BMC Medical Genetics 15, 1220. https://doi.org/10.1186/s12881-014-0138-x.CrossRefGoogle ScholarPubMed
Hirvonen, A (2009) Gene-environment interactions in chronic pulmonary diseases. Mutation Research 667(1–2), 132141. https://doi.org/10.1016/j.mrfmmm.2008.12.013.CrossRefGoogle ScholarPubMed
Ho, RH, Choi, L, Lee, W, Mayo, G, Schwarz, UI, Tirona, RG, Bailey, DG, Stein, CM and Kim, RB (2007) Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenetics and Genomics 17(8), 647656. https://doi.org/10.1097/FPC.0b013e3280ef698f.CrossRefGoogle ScholarPubMed
Hori, M, Connolly, SJ, Zhu, J, Liu, LS, Lau, C-P, Pais, P, Xavier, D, Kim, SS, Omar, R, Dans, AL, Tan, RS, Chen, J-H, Tanomsup, S, Watanabe, M, Koyanagi, M, Ezekowitz, MD, Reilly, PA, Wallentin, L and Yusuf, S (2013) Dabigatran versus warfarin: Effects on ischemic and hemorrhagic strokes and bleeding in Asians and non-Asians with atrial fibrillation. Stroke 44(7), 18911896. https://doi.org/10.1161/STROKEAHA.113.000990.CrossRefGoogle ScholarPubMed
Hou, L, Osei-Hyiaman, D, Yu, H, Ren, Z, Zhang, Z, Wang, B and Harada, S (2001) Association of a 27-bp repeat polymorphism in ecNOS gene with ischemic stroke in Chinese patients. Neurology 56(4), 490496. https://doi.org/10.1212/wnl.56.4.490.CrossRefGoogle ScholarPubMed
Houkin, K, Ito, M, Sugiyama, T, Shichinohe, H, Nakayama, N, Kazumata, K and Kuroda, S (2012) Review of past research and current concepts on the etiology of moyamoya disease. Neurologia Medico-Chirurgica 52(5), 267277. https://doi.org/10.2176/nmc.52.267.CrossRefGoogle ScholarPubMed
Howard, G, Cushman, M, Kissela, BM, Kleindorfer, DO, McClure, LA, Safford, MM, Rhodes, JD, Soliman, EZ, Moy, CS, Judd, SE and Howard, VJ (2011) Traditional risk factors as the underlying cause of racial disparities in stroke: Lessons from the half-full (empty?) glass. Stroke 42(12), 33693375. https://doi.org/10.1161/STROKEAHA.111.625277.CrossRefGoogle ScholarPubMed
Howard, TD, Giles, WH, Xu, J, Wozniak, MA, Malarcher, AM, Lange, LA, Macko, RF, Basehore, MJ, Meyers, DA, Cole, JW and Kittner, SJ (2005) Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women. Stroke 36(9), 18481851. https://doi.org/10.1161/01.STR.0000177978.97428.53.CrossRefGoogle ScholarPubMed
Howard, VJ, Kleindorfer, DO, Judd, SE, McClure, LA, Safford, MM, Rhodes, JD, Cushman, M, Moy, CS, Soliman, EZ, Kissela, BM and Howard, G (2011) Disparities in stroke incidence contributing to disparities in stroke mortality. Annals of Neurology 69(4), 619627. https://doi.org/10.1002/ana.22385.CrossRefGoogle ScholarPubMed
Hu, M, Cheung, BMY and Tomlinson, B (2012) Safety of statins: An update. Therapeutic Advances in Drug Safety 3(3), 133144. https://doi.org/10.1177/2042098612439884.CrossRefGoogle ScholarPubMed
Ieiri, I, Higuchi, S and Sugiyama, Y (2009) Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: Implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opinion on Drug Metabolism & Toxicology 5(7), 703729. https://doi.org/10.1517/17425250902976854.CrossRefGoogle ScholarPubMed
Julius, S, Alderman, MH, Beevers, G, Dahlöf, B, Devereux, RB, Douglas, JG, Edelman, JM, Harris, KE, Kjeldsen, SE, Nesbitt, S, Randall, OS and Wright, JTJ (2004) Cardiovascular risk reduction in hypertensive black patients with left ventricular hypertrophy: The LIFE study. Journal of the American College of Cardiology 43(6), 10471055. https://doi.org/10.1016/j.jacc.2003.11.029.CrossRefGoogle ScholarPubMed
Kamin Mukaz, D, Zakai, NA, Cruz-Flores, S, McCullough, LD and Cushman, M (2020) Identifying genetic and biological determinants of race-ethnic disparities in stroke in the United States. Stroke 51(11), 34173424. https://doi.org/10.1161/STROKEAHA.120.030425.CrossRefGoogle ScholarPubMed
Kamiza, AB, Toure, SM, Vujkovic, M, Machipisa, T, Soremekun, OS, Kintu, C, Corpas, M, Pirie, F, Young, E, Gill, D, Sandhu, MS, Kaleebu, P, Nyirenda, M, Motala, AA, Chikowore, T and Fatumo, S (2022) Transferability of genetic risk scores in African populations. Nature Medicine 28(6), 11631166. https://doi.org/10.1038/s41591-022-01835-x.CrossRefGoogle ScholarPubMed
Keeling, D, Baglin, T, Tait, C, Watson, H, Perry, D, Baglin, C, Kitchen, S, Makris, M and British Committee for Standards in Haematology (2011) Guidelines on oral anticoagulation with warfarin – Fourth edition. British Journal of Haematology 154(3), 311324. https://doi.org/10.1111/j.1365-2141.2011.08753.x.CrossRefGoogle ScholarPubMed
Kim, YJ, Go, MJ, Hu, C, Hong, CB, Kim, YK, Lee, JY, Hwang, J-Y, Oh, JH, Kim, D-J, Kim, NH, Kim, S, Hong, EJ, Kim, J-H, Min, H, Kim, Y, Zhang, R, Jia, W, Okada, Y, Takahashi, A, Kubo, M, Tanaka, T, Kamatani, N, Matsuda, K, Park, T, Oh, B, Kimm, K, Kang, D, Shin, C, Cho, NH, Kim, H-L, Han, B-G, Lee, J-Y and Cho, YS (2011) Large-scale genome-wide association studies in east Asians identify new genetic loci influencing metabolic traits. Nature Genetics 43(10), 990995. https://doi.org/10.1038/ng.939.CrossRefGoogle ScholarPubMed
Klimentidis, YC, Abrams, M, Wang, J, Fernandez, JR and Allison, DB (2011) Natural selection at genomic regions associated with obesity and type-2 diabetes: East Asians and sub-Saharan Africans exhibit high levels of differentiation at type-2 diabetes regions. Human Genetics 129(4), 407418. https://doi.org/10.1007/s00439-010-0935-z.CrossRefGoogle ScholarPubMed
Kolb, H and Martin, S (2017) Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Medicine 15(1), 131. https://doi.org/10.1186/s12916-017-0901-x.CrossRefGoogle ScholarPubMed
Koyama, S, Ito, K, Terao, C, Akiyama, M, Horikoshi, M, Momozawa, Y,Matsunaga, H, Ieki, H, Ozaki, K, Onouchi, Y, Takahashi, A, Nomura, S, Morita, H, Akazawa, H, Kim, C, Seo, J, Higasa, K, Iwasaki, M, Yamaji, T, Sawada, N, Tsugane, S, Koyama, T, Ikezaki, H, Takashima, N, Tanaka, K, Arisawa, K, Kuriki, K, Naito, M, Wakai, K, Suna, S, Sakata, Y, Sato, H, Hori, M, Sakata, Y, Matsuda, K, Murakami, Y, Aburatani, H, Kubo, M, Matsuda, F, Kamatani, Y and Komuro, I (2020) Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nature Genetics 52(11), 11691177. https://doi.org/10.1038/s41588-020-0705-3.CrossRefGoogle ScholarPubMed
Kuchenbaecker, K, Telkar, N, Reiker, T, Walters, RG, Lin, K, Eriksson, A, Gurdasani, D, Gilly, A, Southam, L, Tsafantakis, E, Karaleftheri, M, Seeley, J, Kamali, A, Asiki, G, Millwood, IY, Holmes, M, Du, H, Guo, Y, Kumari, M, Dedoussis, G, Li, L, Chen, Z, Sandhu, MS, Zeggini, E, Benzeval, M, Burton, J, Buck, N, Jäckle, A, Laurie, H, Lynn, P, Pudney, S, Rabe, B, Wolke, D and Understanding Society Scientific Group (2019) The transferability of lipid loci across African, Asian and European cohorts. Nature Communications 10(1), 4330. https://doi.org/10.1038/s41467-019-12026-7.CrossRefGoogle ScholarPubMed
Lee, E, Ryan, S, Birmingham, B, Zalikowski, J, March, R, Ambrose, H, Moore, R, Lee, C, Chen, Y and Schneck, D (2005) Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clinical Pharmacology and Therapeutics 78(4), 330341. https://doi.org/10.1016/j.clpt.2005.06.013.CrossRefGoogle ScholarPubMed
Lee, H-K, Hu, M, Lui, SS, Ho, C-S, Wong, C-K and Tomlinson, B (2013) Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics 14(11), 12831294. https://doi.org/10.2217/pgs.13.115.CrossRefGoogle ScholarPubMed
Liao, JK (2007) Safety and efficacy of statins in Asians. The American Journal of Cardiology 99(3), 410414. https://doi.org/10.1016/j.amjcard.2006.08.051.CrossRefGoogle ScholarPubMed
Link, E, Parish, S, Armitage, J, Bowman, L, Heath, S, Matsuda, F, Gut, I, Lathrop, M and Collins, R (2008) SLCO1B1 variants and statin-induced myopathy – A genomewide study. The New England Journal of Medicine 359(8), 789799. https://doi.org/10.1056/NEJMoa0801936.Google ScholarPubMed
Liu, Y-J, Liu, X-G, Wang, L, Dina, C, Yan, H, Liu, J-F, Levy, S, Papasian, CJ, Drees, BM, Hamilton, JJ, Meyre, D, Delplanque, J, Pei, Y-F, Zhang, L, Recker, RR, Froguel, P and Deng, H-W (2008) Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Human Molecular Genetics 17(12), 18031813. https://doi.org/10.1093/hmg/ddn072.CrossRefGoogle ScholarPubMed
Lorenzo, C, Wagenknecht, LE, D’Agostino, RBJ, Rewers, MJ, Karter, AJ and Haffner, SM (2010) Insulin resistance, beta-cell dysfunction, and conversion to type 2 diabetes in a multiethnic population: The insulin resistance atherosclerosis Study. Diabetes Care 33(1), 6772. https://doi.org/10.2337/dc09-1115.CrossRefGoogle Scholar
Mahajan, A, Spracklen, CN, Zhang, W, Ng, MCY, Petty, LE, Kitajima, H, Yu, GZ, Rüeger, S, Speidel, L, Kim, YJ, Horikoshi, M, Mercader, JM, Taliun, D, Moon, S, Kwak, S-H, Robertson, NR, Rayner, NW, Loh, M, Kim, B-J, Chiou, J, Miguel-Escalada, I, Briotta, Parolo P della, Lin, K, Bragg, F, Preuss, MH, Takeuchi, F, Nano, J, Guo, X, Lamri, A, Nakatochi, M, Scott, RA, Lee, J-J, Huerta-Chagoya, A, Graff, M, Chai, J-F, Parra, EJ, Yao, J, Bielak, LF, Tabara, Y, Hai, Y, Steinthorsdottir, V, Cook, JP, Kals, M, Grarup, N, Schmidt, EM, Pan, I, Sofer, T, Wuttke, M, Sarnowski, C, Gieger, C, Nousome, D, Trompet, S, Long, J, Sun, M, Tong, L, Chen, W-M, Ahmad, M, Noordam, R, Lim, VJY, Tam, CHT, Joo, YY, Chen, C-H, Raffield, LM, Lecoeur, C, Prins, BP, Nicolas, A, Yanek, LR, Chen, G, Jensen, RA, Tajuddin, S, Kabagambe, EK, An, P, Xiang, AH, Choi, HS, Cade, BE, Tan, J, Flanagan, J, Abaitua, F, Adair, LS, Adeyemo, A, Aguilar-Salinas, CA, Akiyama, M, Anand, SS, Bertoni, A, Bian, Z, Bork-Jensen, J, Brandslund, I, Brody, JA, Brummett, CM, Buchanan, TA, Canouil, M, Chan, JCN, Chang, L-C, Chee, M-L, Chen, J, Chen, S-H, Chen, Y-T, Chen, Z, Chuang, L-M, Cushman, M, Das, SK, Silva, HJ de, Dedoussis, G, Dimitrov, L, Doumatey, AP, Du, S, Duan, Q, Eckardt, K-U, Emery, LS, Evans, DS, Evans, MK, Fischer, K, Floyd, JS, Ford, I, Fornage, M, Franco, OH, Frayling, TM, Freedman, BI, Fuchsberger, C, Genter, P, Gerstein, HC, Giedraitis, V, González-Villalpando, C, González-Villalpando, ME, Goodarzi, MO, Gordon-Larsen, P, Gorkin, D, Gross, M, Guo, Y, Hackinger, S, Han, S, Hattersley, AT, Herder, C, Howard, A-G, Hsueh, W, Huang, M, Huang, W, Hung, Y-J, Hwang, MY, Hwu, C-M, Ichihara, S, Ikram, MA, Ingelsson, M, Islam, MT, Isono, M, Jang, H-M, Jasmine, F, Jiang, G, Jonas, JB, Jørgensen, ME, Jørgensen, T, Kamatani, Y, Kandeel, FR, Kasturiratne, A, Katsuya, T, Kaur, V, Kawaguchi, T, Keaton, JM, Kho, AN, Khor, C-C, Kibriya, MG, Kim, D-H, Kohara, K, Kriebel, J, Kronenberg, F, Kuusisto, J, Läll, K, Lange, LA, Lee, M-S, Lee, NR, Leong, A, Li, L, Li, Y, Li-Gao, R, Ligthart, S, Lindgren, CM, Linneberg, A, Liu, C-T, Liu, J, Locke, AE, Louie, T, Luan, J, Luk, AO, Luo, X, Lv, J, Lyssenko, V, Mamakou, V, Mani, KR, Meitinger, T, Metspalu, A, Morris, AD, Nadkarni, GN, Nadler, JL, Nalls, MA, Nayak, U, Nongmaithem, SS, Ntalla, I, Okada, Y, Orozco, L, Patel, SR, Pereira, MA, Peters, A, Pirie, FJ, Porneala, B, Prasad, G, Preissl, S, Rasmussen-Torvik, LJ, Reiner, AP, Roden, M, Rohde, R, Roll, K, Sabanayagam, C, Sander, M, Sandow, K, Sattar, N, Schönherr, S, Schurmann, C, Shahriar, M, Shi, J, Shin, DM, Shriner, D, Smith, JA, So, WY, Stančáková, A, Stilp, AM, Strauch, K, Suzuki, K, Takahashi, A, Taylor, KD, Thorand, B, Thorleifsson, G, Thorsteinsdottir, U, Tomlinson, B, Torres, JM, Tsai, F-J, Tuomilehto, J, Tusie-Luna, T, Udler, MS, Valladares-Salgado, A, Dam, RM van, Klinken, JB van, Varma, R, Vujkovic, M, Wacher-Rodarte, N, Wheeler, E, Whitsel, EA, Wickremasinghe, AR, Dijk, KW van, Witte, DR, Yajnik, CS, Yamamoto, K, Yamauchi, T, Yengo, L, Yoon, K, Yu, C, Yuan, J-M, Yusuf, S, Zhang, L, Zheng, W, Rüeger, S, Briotta, Parolo P della, Joo, YY, Hayes, MG, Raffel, LJ, Igase, M, Ipp, E, Redline, S, Cho, YS, Lind, L, Province, MA, Hanis, CL, Peyser, PA, Ingelsson, E, Zonderman, AB, Psaty, BM, Wang, Y-X, Rotimi, CN, Becker, DM, Matsuda, F, Liu, Y, Zeggini, E, Yokota, M, Rich, SS, Kooperberg, C, Pankow, JS, Engert, JC, Chen, Y-DI, Froguel, P, Wilson, JG, Sheu, WHH, Kardia, SLR, Wu, J-Y, Hayes, MG, Ma, RCW, Wong, T-Y, Groop, L, Mook-Kanamori, DO, Chandak, GR, FinnGen and eMERGE Consortium (2022) Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics 54(5), 560572. https://doi.org/10.1038/s41588-022-01058-3.CrossRefGoogle ScholarPubMed
Mahajan, A, Taliun, D, Thurner, M, Robertson, NR, Torres, JM, Rayner, NW, Payne, AJ, Steinthorsdottir, V, Scott, RA, Grarup, N, Cook, JP, Schmidt, EM, Wuttke, M, Sarnowski, C, Mägi, R, Nano, J, Gieger, C, Trompet, S, Lecoeur, C, Preuss, MH, Prins, BP, Guo, X, Bielak, LF, Below, JE, Bowden, DW, Chambers, JC, Kim, YJ, Ng, MCY, Petty, LE, Sim, X, Zhang, W, Bennett, AJ, Bork-Jensen, J, Brummett, CM, Canouil, M, Ec, Kardt K-U, Fischer, K, Kardia, SLR, Kronenberg, F, Läll, K, Liu, C-T, Locke, AE, Luan, J, Ntalla, I, Nylander, V, Schönherr, S, Schurmann, C, Yengo, L, Bottinger, EP, Brandslund, I, Christensen, C, Dedoussis, G, Florez, JC, Ford, I, Franco, OH, Frayling, TM, Giedraitis, V, Hackinger, S, Hattersley, AT, Herder, C, Ikram, MA, Ingelsson, M, Jørgensen, ME, Jørgensen, T, Kriebel, J, Kuusisto, J, Ligthart, S, Lindgren, CM, Linneberg, A, Lyssenko, V, Mamakou, V, Meitinger, T, Mohlke, KL, Morris, AD, Nadkarni, G, Pankow, JS, Peters, A, Sattar, N, Stančáková, A, Strauch, K, Taylor, KD, Thorand, B, Thorleifsson, G, Thorsteinsdottir, U, Tuomilehto, J, Witte, DR, Dupuis, J, Peyser, PA, Zeggini, E, Loos, RJF, Froguel, P, Ingelsson, E, Lind, L, Groop, L, Laakso, M, Collins, FS, Jukema, JW, Palmer, CNA, Grallert, H, Metspalu, A, Dehghan, A, Köttgen, A, Abecasis, GR, Meigs, JB, Rotter, JI, Marchini, J, Pedersen, O, Hansen, T, Langenberg, C, Wareham, NJ, Stefansson, K, Gloyn, AL, Morris, AP, Boehnke, M andMcCarthy, MI (2018) Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics 50(11), 15051513. https://doi.org/10.1038/s41588-018-0241-6.CrossRefGoogle ScholarPubMed
Marenberg, ME, Risch, N, Berkman, LF, Floderus, B and de Faire, U (1994) Genetic susceptibility to death from coronary heart disease in a study of twins. The New England Journal of Medicine 330(15), 10411046. https://doi.org/10.1056/NEJM199404143301503.CrossRefGoogle Scholar
Márquez-Luna, C, Loh, P-R and Price, AL (2017) Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genetic Epidemiology 41(8), 811823. https://doi.org/10.1002/gepi.22083.CrossRefGoogle ScholarPubMed
Martin, AR, Gignoux, CR, Walters, RK, Wojcik, GL, Neale, BM, Gravel, S, Daly, MJ, Bustamante, CD and Kenny, EE (2017) Human demographic history impacts genetic risk prediction across diverse populations. The American Journal of Human Genetics 100(4), 635649. https://doi.org/10.1016/j.ajhg.2017.03.004.CrossRefGoogle ScholarPubMed
Matsunaga, H, Ito, K, Akiyama, M, Takahashi, A, Koyama, S, Nomura, S, Ieki, H, Ozaki, K, Onouchi, Y, Sakaue, S, Suna, S, Ogishima, S, Yamamoto, M, Hozawa, A, Satoh, M, Sasaki, M, Yamaji, T, Sawada, N, Iwasaki, M, Tsugane, S, Tanaka, K, Arisawa, K, Ikezaki, H, Takashima, N, Naito, M, Wakai, K, Tanaka, H, Sakata, Y, Morita, H, Sakata, Y, Matsuda, K, Murakami, Y, Akazawa, H, Kubo, M, Kamatani, Y and Komuro, I (2020) Transethnic meta-analysis of genome-wide association studies identifies three new loci and characterizes population-specific differences for coronary artery disease. Circulation: Genomic and Precision Medicine 13(3), e002670. https://doi.org/10.1161/CIRCGEN.119.002670.Google ScholarPubMed
Mega, JL, Simon, T, Collet, J-P, Anderson, JL, Antman, EM, Bliden, K, Cannon, CP, Danchin, N, Giusti, B, Gurbel, P, Horne, BD, Hulot, J-S, Kastrati, A, Montalescot, G, Neumann, F-J, Shen, L, Sibbing, D, Steg, PG, Trenk, D, Wiviott, SD and Sabatine, MS (2010) Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: A meta-analysis. JAMA 304(16), 18211830. https://doi.org/10.1001/jama.2010.1543.CrossRefGoogle ScholarPubMed
Miyazawa, K and Ito, K (2021) Genetic analysis for coronary artery disease toward diverse populations. Frontiers in Genetics 12, 766485. Available at https://www.frontiersin.org/articles/ 10.3389/fgene.2021.766485.CrossRefGoogle ScholarPubMed
Nguyen, TT, Kaufman, JS, Whitsel, EA and Cooper, RS (2009) Racial differences in blood pressure response to calcium channel blocker monotherapy: A meta-analysis. American Journal of Hypertension 22(8), 911917. https://doi.org/10.1038/ajh.2009.100.CrossRefGoogle ScholarPubMed
Nikpay, M, Goel, A, Won, H-H, Hall, LM, Willenborg, C, Kanoni, S,Saleheen, D, Kyriakou, T, Nelson, CP, Hopewell, JC, Webb, TR, Zeng, L, Dehghan, A, Alver, M, Armasu, SM, Auro, K, Bjonnes, A, Chasman, DI, Chen, S, Ford, I, Franceschini, N, Gieger, C, Grace, C, Gustafsson, S, Huang, J, Hwang, S-J, Kim, YK, Kleber, ME, Lau, KW, Lu, X, Lu, Y, Lyytikäinen, L-P, Mihailov, E, Morrison, AC, Pervjakova, N, Qu, L, Rose, LM, Salfati, E, Saxena, R, Scholz, M, Smith, A V, Tikkanen, E, Uitterlinden, A, Yang, X, Zhang, W, Zhao, W, Andrade, M de, Vries, PS de, Zuydam, NR van, Anand, SS, Bertram, L, Beutner, F, Dedoussis, G, Frossard, P, Gauguier, D, Goodall, AH, Gottesman, O, Haber, M, Han, B-G, Huang, J, Jalilzadeh, S, Kessler, T, König, IR, Lannfelt, L, Lieb, W, Lind, L, Lindgren, CM, Lokki, M-L, Magnusson, PK, Mallick, NH, Mehra, N, Meitinger, T, Memon, F-U-R, Morris, AP, Nieminen, MS, Pedersen, NL, Peters, A, Rallidis, LS, Rasheed, A, Samuel, M, Shah, SH, Sinisalo, J, Stirrups, KE, Trompet, S, Wang, L, Zaman, KS, Ardissino, D, Boerwinkle, E, Borecki, IB, Bottinger, EP, Buring, JE, Chambers, JC, Collins, R, Cupples, LA, Danesh, J, Demuth, I, Elosua, R, Epstein, SE, Esko, T, Feitosa, MF, Franco, OH, Franzosi, MG, Granger, CB, Gu, D, Gudnason, V, Hall, AS, Hamsten, A, Harris, TB, Hazen, SL, Hengstenberg, C, Hofman, A, Ingelsson, E, Iribarren, C, Jukema, JW, Karhunen, PJ, Kim, B-J, Kooner, JS, Kullo, IJ, Lehtimäki, T, Loos, RJF, Melander, O, Metspalu, A, März, W, Palmer, CN, Perola, M, Quertermous, T, Rader, DJ, Ridker, PM, Ripatti, S, Roberts, R, Salomaa, V, Sanghera, DK, Schwartz, SM, Seedorf, U, Stewart, AF, Stott, DJ, Thiery, J, Zalloua, PA, O’Donnell, CJ, Reilly, MP, Assimes, TL, Thompson, JR, Erdmann, J, Clarke, R, Watkins, H, Kathiresan, S, McPherson, R, Deloukas, P, Schunkert, H, Samani, NJ and Farrall, M (2015) A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nature Genetics 47(10), 11211130. https://doi.org/10.1038/ng.3396.Google ScholarPubMed
Ochoa, D, Karim, M, Ghoussaini, M, Hulcoop, DG, McDonagh, EM and Dunham, I (2022) Human genetics evidence supports two-thirds of the 2021 FDA-approved drugs. Nature Reviews. Drug Discovery 21(8), 551. https://doi.org/10.1038/d41573-022-00120-3.CrossRefGoogle ScholarPubMed
Ordovas, JM and Shen, J (2008) Gene-environment interactions and susceptibility to metabolic syndrome and other chronic diseases. Journal of Periodontology 79(8 Suppl), 15081513. https://doi.org/10.1902/jop.2008.080232.CrossRefGoogle ScholarPubMed
Ortega, FB, Lavie, CJ and Blair, SN (2016) Obesity and cardiovascular disease. Circulation Research 118(11), 17521770. https://doi.org/10.1161/CIRCRESAHA.115.306883.CrossRefGoogle ScholarPubMed
Peck, RN, Smart, LR, Beier, R, Liwa, AC, Grosskurth, H, Fitzgerald, DW and Schmidt, BMW (2013) Difference in blood pressure response to ACE-inhibitor monotherapy between black and white adults with arterial hypertension: A meta-analysis of 13 clinical trials. BMC Nephrology 14(1), 201. https://doi.org/10.1186/1471-2369-14-201.CrossRefGoogle ScholarPubMed
Peng, K, Bacon, J, Zheng, M, Guo, Y and Wang, MZ (2015) Ethnic variability in the expression of hepatic drug transporters: Absolute quantification by an optimized targeted quantitative proteomic approach. Drug Metabolism and Disposition: The Biological Fate of Chemicals 43(7), 10451055. https://doi.org/10.1124/dmd.115.063362.CrossRefGoogle ScholarPubMed
Peterson, RE, Kuchenbaecker, K, Walters, RK, Chen, C-Y, Popejoy, AB, Periyasamy, S, Lam, M, Iyegbe, C, Strawbridge, RJ, Brick, L, Carey, CE, Martin, AR, Meyers, JL, Su, J, Chen, J, Edwards, AC, Kalungi, A, Koen, N, Majara, L, Schwarz, E, Smoller, JW, Stahl, EA, Sullivan, PF, Vassos, E, Mowry, B, Prieto, ML, Cuellar-Barboza, A, Bigdeli, TB, Edenberg, HJ, Huang, H and Duncan, LE (2019) Genome-wide association studies in ancestrally diverse populations: Opportunities, methods, pitfalls, and recommendations. Cell 179(3), 589603. https://doi.org/10.1016/j.cell.2019.08.051.CrossRefGoogle ScholarPubMed
Pilia, G, Chen, W-M, Scuteri, A, Orrú, M, Albai, G, Dei, M, Lai, S, Usala, G, Lai, M, Loi, P, Mameli, C, Vacca, L, Deiana, M, Olla, N, Masala, M, Cao, A, Najjar, SS, Terracciano, A, Nedorezov, T, Sharov, A, Zonderman, AB, Abecasis, GR, Costa, P, Lakatta, E and Schlessinger, D (2006) Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genetics 2(8), e132. https://doi.org/10.1371/journal.pgen.0020132.CrossRefGoogle ScholarPubMed
Prapiadou, S, Demel, SL and Hyacinth, HI (2021) Genetic and genomic epidemiology of stroke in people of African ancestry. Genes 12(11). https://doi.org/10.3390/genes12111825.CrossRefGoogle ScholarPubMed
Preston, RA, Materson, BJ, Reda, DJ, Williams, DW, Hamburger, RJ, Cushman, WC and Anderson, RJ (1998) Age-race subgroup compared with renin profile as predictors of blood pressure response to antihypertensive therapy. Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. JAMA 280(13), 11681172. https://doi.org/10.1001/jama.280.13.1168.CrossRefGoogle Scholar
Quertemont, E and Didone, V (2006) Role of acetaldehyde in mediating the pharmacological and behavioral effects of alcohol. Alcohol Research & Health: The Journal of the National Institute on Alcohol Abuse and Alcoholism 29(4), 258265.Google ScholarPubMed
Roberts, MC, Fohner, AE, Landry, L, Olstad, DL, Smit, AK, Turbitt, E and Allen, CG (2021) Advancing precision public health using human genomics: Examples from the field and future research opportunities. Genome Medicine 13(1), 97. https://doi.org/10.1186/s13073-021-00911-0.CrossRefGoogle ScholarPubMed
Roger, VL, Go, AS, Lloyd-Jones, DM, Adams, RJ, Berry, JD, Brown, TM, Carnethon, MR, Dai, S, Simone, G de, Ford, ES, Fox, CS, Fullerton, HJ, Gillespie, C, Greenlund, KJ, Hailpern, SM, Heit, JA, Ho, PM, Howard, VJ, Kissela, BM, Kittner, SJ, Lackland, DT, Lichtman, JH, Lisabeth, LD, Makuc, DM, Marcus, GM, Marelli, A, Matchar, DB, McDermott, MM, Meigs, JB, Moy, CS, Mozaffarian, D, Mussolino, ME, Nichol, G, Paynter, NP, Rosamond, WD, Sorlie, PD, Stafford, RS, Turan, TN, Turner, MB, Wong, ND and Wylie-Rosett, J (2011) Heart disease and stroke statistics – 2011 update: A report from the American Heart Association. Circulation 123(4), e18e209. https://doi.org/10.1161/CIR.0b013e3182009701.CrossRefGoogle ScholarPubMed
Rosamond, WD, Folsom, AR, Chambless, LE, Wang, CH, McGovern, PG, Howard, G, Copper, LS and Shahar, E (1999) Stroke incidence and survival among middle-aged adults: 9-year follow-up of the atherosclerosis risk in communities (ARIC) cohort. Stroke 30(4), 736743. https://doi.org/10.1161/01.str.30.4.736.CrossRefGoogle ScholarPubMed
Roth, GA, Mensah, GA, Johnson, CO, Addolorato, G, Ammirati, E, Baddour, LM, Barengo, NC, Beaton, AZ, Benjamin, EJ, Benziger, CP, Bonny, A, Brauer, M, Brodmann, M, Cahill, TJ, Carapetis, J, Catapano, AL, Chugh, SS, Cooper, LT, Coresh, J, Criqui, M, DeCleene, N, Eagle, KA, Emmons-Bell, S, Feigin, VL, Fernández-Solà, J, Fowkes, G, Gakidou, E, Grundy, SM, He, FJ, Howard, G, Hu, F, Inker, L, Karthikeyan, G, Kassebaum, N, Koroshetz, W, Lavie, C, Lloyd-Jones, D, Lu, HS, Mirijello, A, Temesgen, AM, Mokdad, A, Moran, AE, Muntner, P, Narula, J, Neal, B, Ntsekhe, M, Moraes, de Oliveira G, Otto, C, Owolabi, M, Pratt, M, Rajagopalan, S, Reitsma, M, Ribeiro, ALP, Rigotti, N, Rodgers, A, Sable, C, Shakil, S, Sliwa-Hahnle, K, Stark, B, Sundström, J, Timpel, P, Tleyjeh, IM, Valgimigli, M, Vos, T, Whelton, PK, Yacoub, M, Zuhlke, L, Murray, C and Fuster, V (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 Study. Journal of the American College of Cardiology 76(25), 29823021. https://doi.org/10.1016/j.jacc.2020.11.010.CrossRefGoogle ScholarPubMed
Sankar, P and Cho, MK (2002) Genetics. Toward a new vocabulary of human genetic variation. Science 298(5597), 13371338. https://doi.org/10.1126/science.1074447.CrossRefGoogle Scholar
Scriver, CR (2006) Allelic and locus heterogeneity. eLS. https://doi.org/10.1038/npg.els.0005481.CrossRefGoogle Scholar
Seedat, YK and Parag, KB (1987) A comparison of lisinopril and atenolol in black and Indian patients with mild-to-moderate essential hypertension. South African Medical Journal = Suid-Afrikaanse Tydskrif Vir Geneeskunde 71(3), 149153.Google ScholarPubMed
Shah, ASV, Lee, KK, Pérez, JAR, Campbell, D, Astengo, F, Logue, J,Gallacher, PJ, Katikireddi, SV, Bing, R, Alam, SR, Anand, A, Sudlow, C, Fischbacher, CM, Lewsey, J, Perel, P, Newby, DE, Mills, NL and McAllister, DA (2021) Clinical burden, risk factor impact and outcomes following myocardial infarction and stroke: A 25-year individual patient level linkage study. The Lancet Regional Health – Europe 7, 100141. https://doi.org/10.1016/j.lanepe.2021.100141.CrossRefGoogle ScholarPubMed
Shetty, PB, Tang, H, Feng, T, Tayo, B, Morrison, AC, Kardia, SLR, Hanis, CL, Arnett, DK, Hunt, SC, Boerwinkle, E, Rao, DC, Cooper, RS, Risch, N and Zhu, X (2015) Variants for HDL-C, LDL-C, and triglycerides identified from admixture mapping and fine-mapping analysis in African American families. Circulation. Cardiovascular Genetics 8(1), 106113. https://doi.org/10.1161/CIRCGENETICS.114.000481.CrossRefGoogle ScholarPubMed
Shin, J and Johnson, JA (2007) Pharmacogenetics of beta-blockers. Pharmacotherapy 27(6), 874887. https://doi.org/10.1592/phco.27.6.874.CrossRefGoogle ScholarPubMed
Shoily, SS, Ahsan, T, Fatema, K and Sajib, AA (2021) Common genetic variants and pathways in diabetes and associated complications and vulnerability of populations with different ethnic origins. Scientific Reports 11(1), 7504. https://doi.org/10.1038/s41598-021-86801-2.CrossRefGoogle ScholarPubMed
Sinnott, S, Douglas, IJ, Smeeth, L, Williamson, E, Tomlinson, LA (2020). First linedrug treatment for hypertension and reductions in blood pressure according to age and ethnicity: cohort study in UK primary care. BMJ 371, m4080 https://doi.org/10.1136/bmj.m4080.CrossRefGoogle Scholar
Soremekun, O, Karhunen, V, He, Y, Rajasundaram, S, Liu, B, Gkatzionis, A, Soremekun, C, Udosen, B, Musa, H, Silva, S, Kintu, C, Mayanja, R, Nakabuye, M, Machipisa, T, Mason, A, Vujkovic, M, Zuber, V, Soliman, M, Mugisha, J, Nash, O, Kaleebu, P, Nyirenda, M, Chikowore, T, Nitsch, D, Burgess, S, Gill, D and Fatumo, S (2022) Lipid traits and type 2 diabetes risk in African ancestry individuals: A Mendelian randomization study. eBioMedicine 78, 103953. https://doi.org/10.1016/j.ebiom.2022.103953.CrossRefGoogle ScholarPubMed
Sowinski, KM, Lima, JJ, Burlew, BS, Massie, JD and Johnson, JA (1996) Racial differences in propranolol enantiomer kinetics following simultaneous i.v. and oral administration. British Journal of Clinical Pharmacology 42(3), 339346. https://doi.org/10.1046/j.1365-2125.1996.03879.x.CrossRefGoogle ScholarPubMed
Speliotes, EK, Willer, CJ, Berndt, SI, Monda, KL, Thorleifsson, G, Jackson, AU, Allen, HL, Lindgren, CM, Luan, J, Mägi, R, Randall, JC, Vedantam, S, Winkler, TW, Qi, L, Workalemahu, T, Heid, IM, Steinthorsdottir, V, Stringham, HM, Weedon, MN, Wheeler, E, Wood, AR, Ferreira, T, Weyant, RJ, Segrè, A V, Estrada, K, Liang, L, Nemesh, J, Park, J-H, Gustafsson, S, Kilpeläinen, TO, Yang, J, Bouatia-Naji, N, Esko, T, Feitosa, MF, Kutalik, Z, Mangino, M, Raychaudhuri, S, Scherag, A, Smith, AV, Welch, R, Zhao, JH, Aben, KK, Absher, DM, Amin, N, Dixon, AL, Fisher, E, Glazer, NL, Goddard, ME, Heard-Costa, NL, Hoesel, V, Hottenga, J-J, Johansson, Å, Johnson, T, Ketkar, S, Lamina, C, Li, S, Moffatt, MF, Myers, RH, Narisu, N, Perry, JRB, Peters, MJ, Preuss, M, Ripatti, S, Rivadeneira, F, Sandholt, C, Scott, LJ, Timpson, NJ, Tyrer, JP, Wingerden, S van, Watanabe, RM, White, CC, Wiklund, F, Barlassina, C, Chasman, DI, Cooper, MN, Jansson, J-O, Lawrence, RW, Pellikka, N, Prokopenko, I, Shi, J, Thiering, E, Alavere, H, Alibrandi, MTS, Almgren, P, Arnold, AM, Aspelund, T, Atwood, LD, Balkau, B, Balmforth, AJ, Bennett, AJ, Ben-Shlomo, Y, Bergman, RN, Bergmann, S, Biebermann, H, Blakemore, AIF, Boes, T, Bonnycastle, LL, Bornstein, SR, Brown, MJ, Buchanan, TA, Busonero, F, Campbell, H, Cappuccio, FP, Cavalcanti-Proença, C, Chen, Y-DI, Chen, C-M, Chines, PS, Clarke, R, Coin, L, Connell, J, Day, INM, Heijer, M den, Duan, J, Ebrahim, S, Elliott, P, Elosua, R, Eiriksdottir, G, Erdos, MR, Eriksson, JG, Facheris, MF, Felix, SB, Fischer-Posovszky, P, Folsom, AR, Friedrich, N, Freimer, NB, Fu, M, Gaget, S, Gejman, P V, Geus, EJC, Gieger, C, Gjesing, AP, Goel, A, Goyette, P, Grallert, H, Gräßler, J, Greenawalt, DM, Groves, CJ, Gudnason, V, Guiducci, C, Hartikainen, A-L, Hassanali, N, Hall, AS, Havulinna, AS, Hayward, C, Heath, AC, Hengstenberg, C, Hicks, AA, Hinney, A, Hofman, A, Homuth, G, Hui, J, Igl, W, Iribarren, C, Isomaa, B, Jacobs, KB, Jarick, I, Jewell, E, John, U, Jørgensen, T, Jousilahti, P, Jula, A, Kaakinen, M, Kajantie, E, Kaplan, LM, Kathiresan, S, Kettunen, J, Kinnunen, L, Knowles, JW, Kolcic, I, König, IR, Koskinen, S, Kovacs, P, Kuusisto, J, Kraft, P, Kvaløy, K, Laitinen, J, Lantieri, O, Lanzani, C, Launer, LJ, Lecoeur, C, Lehtimäki, T, Lettre, G, Liu, J, Lokki, M-L, Lorentzon, M, Luben, RN, Ludwig, B, Manunta, P, Marek, D, Marre, M, Martin, NG, McArdle, WL, McCarthy, A, McKnight, B, Meitinger, T, Melander, O, Meyre, D, Midthjell, K, Montgomery, GW, Morken, MA, Morris, AP, Mulic, R, Ngwa, JS, Nelis, M, Neville, MJ, Nyholt, DR, O’Donnell, CJ, O’Rahilly, S, Ong, KK, Oostra, B, Paré, G, Parker, AN, Perola, M, Pichler, I, Pietiläinen, KH, Platou, CGP, Polasek, O, Pouta, A, Rafelt, S, Raitakari, O, Rayner, NW, Ridderstråle, M, Rief, W, Ruokonen, A, Robertson, NR, Rzehak, P, Salomaa, V, Sanders, AR, Sandhu, MS, Sanna, S, Saramies, J, Savolainen, MJ, Scherag, S, Schipf, S, Schreiber, S, Schunkert, H, Silander, K, Sinisalo, J, Siscovick, DS, Smit, JH, Soranzo, N, Sovio, U, Stephens, J, Surakka, I, Swift, AJ, Tammesoo, M-L, Tardif, J-C, Teder-Laving, M, Teslovich, TM, Thompson, JR, Thomson, B, Tönjes, A, Tuomi, T, Meurs, JBJ van, Ommen, G-J van, Vatin, V, Viikari, J, Visvikis-Siest, S, Vitart, V, Vogel, CIG, Voight, BF, Waite, LL, Wallaschofski, H, Walters, GB, Widen, E, Wiegand, S, Wild, SH, Willemsen, G, Witte, DR, Witteman, JC, Xu, J, Zhang, Q, Zgaga, L, Ziegler, A, Zitting, P, Beilby, JP, Farooqi, IS, Hebebrand, J, Huikuri, H V, James, AL, Kähönen, M, Levinson, DF, Macciardi, F, Nieminen, MS, Ohlsson, C, Palmer, LJ, Ridker, PM, Stumvoll, M, Beckmann, JS, Boeing, H, Boerwinkle, E, Boomsma, DI, Caulfield, MJ, Chanock, SJ, Collins, FS, Cupples, LA, Smith, GD, Erdmann, J, Froguel, P and MAGIC (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics 42(11), 937948. https://doi.org/10.1038/ng.686.CrossRefGoogle ScholarPubMed
Spence, JD and Rayner, BL (2018) Hypertension in blacks. Hypertension 72(2), 263269. https://doi.org/10.1161/HYPERTENSIONAHA.118.11064.CrossRefGoogle ScholarPubMed
Stansbury, JP, Jia, H, Williams, LS, Vogel, WB and Duncan, PW (2005) Ethnic disparities in stroke: Epidemiology, acute care, and postacute outcomes. Stroke 36(2), 374386. https://doi.org/10.1161/01.STR.0000153065.39325.fd.CrossRefGoogle ScholarPubMed
Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH) Collaborative Group (2010) Intensive lowering of LDL cholesterol with 80 mg versus 20 mg simvastatin daily in 12,064 survivors of myocardial infarction: A double-blind randomised trial. The Lancet 376(9753), 16581669. https://doi.org/10.1016/S0140-6736(10)60310-8.CrossRefGoogle Scholar
Sun, L, Clarke, R, Bennett, D, Guo, Y, Walters, RG, Hill, M, Parish, S, Millwood, IY, Bian, Z, Chen, Y, Yu, C, Lv, J, Collins, R, Chen, J, Peto, R, Li, L and Chen, Z (2019) Causal associations of blood lipids with risk of ischemic stroke and intracerebral hemorrhage in Chinese adults. Nature Medicine 25(4), 569574. https://doi.org/10.1038/s41591-019-0366-x.CrossRefGoogle ScholarPubMed
Sung, YJ, Winkler, TW, de Las Fuentes, L, Bentley, AR, Brown, MR, Kraja, AT, Schwander, K, Ntalla, I, Guo, X, Franceschini, N, Lu, Y, Cheng, C-Y, Sim, X, Vojinovic, D, Marten, J, Musani, SK, Li, C, Feitosa, MF, Kilpeläinen, TO, Richard, MA, Noordam, R, Aslibekyan, S, Aschard, H, Bartz, TM, Dorajoo, R, Liu, Y, Manning, AK, Rankinen, T, Smith, AV, Tajuddin, SM, Tayo, BO, Warren, HR, Zhao, W, Zhou, Y, Matoba, N, Sofer, T, Alver, M, Amini, M, Boissel, M, Chai, JF, Chen, X, Divers, J, Gandin, I, Gao, C, Giulianini, F, Goel, A, Harris, SE, Hartwig, FP, Horimoto, ARVR, Hsu, F-C, Jackson, AU, Kähönen, M, Kasturiratne, A, Kühnel, B, Leander, K, Lee, W-J, Lin, K-H, ’an, Luan J, McKenzie, CA, Meian, H, Nelson, CP, Rauramaa, R, Schupf, N, Scott, RA, Sheu, WHH, Stančáková, A, Takeuchi, F, Most, PJ van der, Varga, T V, Wang, H, Wang, Y, Ware, EB, Weiss, S, Wen, W, Yanek, LR, Zhang, W, Zhao, JH, Afaq, S, Alfred, T, Amin, N, Arking, D, Aung, T, Barr, RG, Bielak, LF, Boerwinkle, E, Bottinger, EP, Braund, PS, Brody, JA, Broeckel, U, Cabrera, CP, Cade, B, Caizheng, Y, Campbell, A, Canouil, M, Chakravarti, A, Chauhan, G, Christensen, K, Cocca, M, Collins, FS, Connell, JM, Mutsert, R de, Silva, HJ de, Debette, S, Dörr, M, Duan, Q, Eaton, CB, Ehret, G, Evangelou, E, Faul, JD, Fisher, VA, Forouhi, NG, Franco, OH, Friedlander, Y, Gao, H, Gigante, B, Graff, M, Gu, CC, Gu, D, Gupta, P, Hagenaars, SP, Harris, TB, He, J, Heikkinen, S, Heng, C-K, Hirata, M, Hofman, A, Howard, B V, Hunt, S, Irvin, MR, Jia, Y, Joehanes, R, Justice, AE, Katsuya, T, Kaufman, J, Kerrison, ND, Khor, CC, Koh, W-P, Koistinen, HA, Komulainen, P, Kooperberg, C, Krieger, JE, Kubo, M, Kuusisto, J, Langefeld, CD, Langenberg, C, Launer, LJ, Lehne, B, Lewis, CE, Li, Y, Lim, SH, Lin, S, Liu, C-T, Liu, J, Liu, J, Liu, K, Liu, Y, Loh, M, Lohman, KK, Long, J, Louie, T, Mägi, R, Mahajan, A, Meitinger, T, Metspalu, A, Milani, L, Momozawa, Y, Morris, AP, Mosley, THJ, Munson, P, Murray, AD, Nalls, MA, Nasri, U, Norris, JM, North, K, Ogunniyi, A, Padmanabhan, S, Palmas, WR, Palmer, ND, Pankow, JS, Pedersen, NL, Peters, A, Peyser, PA, Polasek, O, Raitakari, OT, Renström, F, Rice, TK, Ridker, PM, Robino, A, Robinson, JG, Rose, LM, Rudan, I, Sabanayagam, C, Salako, BL, Sandow, K, Schmidt, CO, Schreiner, PJ, Scott, WR, Seshadri, S, Sever, P, Sitlani, CM, Smith, JA, Snieder, H, Starr, JM, Strauch, K, Tang, H, Taylor, KD, Teo, YY, Tham, YC, Uitterlinden, AG, Waldenberger, M, Wang, L, Wang, YX, Wei, W Bin, Williams, C, Wilson, G, Wojczynski, MK, Yao, J, Yuan, J-M, Zonderman, AB, Becker, DM, Boehnke, M, Bowden, DW, Chambers, JC, Chen, Y-DI, Faire, U de, Deary, IJ, Esko, T, Farrall, M, Forrester, T, Franks, PW, Freedman, BI, Froguel, P, Gasparini, P, Gieger, C, Horta, BL, Hung, Y-J, Jonas, JB, Kato, N, Kooner, JS, Laakso, M, Lehtimäki, T, Liang, K-W, Magnusson, PKE, Newman, AB, Oldehinkel, AJ, Pereira, AC, Redline, S, Rettig, R, Samani, NJ, Scott, J, Shu, X-O, Harst, P van der, Wagenknecht, LE, Wareham, NJ, Watkins, H, Weir, DR, Wickremasinghe, AR, Wu, T, Zheng, W, Kamatani, Y, Laurie, CC, Bouchard, C, Cooper, RS, Evans, MK, Gudnason, V, Kardia, SLR, Kritchevsky, SB, Levy, D, O’Connell, JR, Psaty, BM, Dam, RM van, Sims, M, Arnett, DK, Mook-Kanamori, DO, Kelly, TN, Fox, ER, Hayward, C, Fornage, M, Rotimi, CN, Province, MA, Duijn, CM van, Tai, ES, Wong, TY, Loos, RJF, Reiner, AP, Rotter, JI, Zhu, X, Bierut, LJ, Gauderman, WJ, Caulfield, MJ, Elliott, P, Rice, K, Munroe, PB, Morrison, AC, Cupples, LA, Rao, DC and Chasman, DI (2018) A large-scale multi-ancestry genome-wide Study accounting for smoking behavior identifies multiple significant loci for blood pressure. American Journal of Human Genetics 102(3), 375400. https://doi.org/10.1016/j.ajhg.2018.01.015.CrossRefGoogle ScholarPubMed
Surakka, I, Wu, K-H, Hornsby, W, Wolford, BN, Shen, F, Zhou, W, Huffman, JE, Pandit, A, Hu, Y, Brumpton, B, Skogholt, AH, Gabrielsen, ME, Walters, RG, Hveem, K, Kooperberg, C, Zöllner, S, Wilson, PWF, Sutton, NR, Daly, MJ, Neale, BM and Willer, CJ (2022) Multi-ancestry meta-analysis identifies 2 novel loci associated with ischemic stroke and reveals heterogeneity of effects between sexes and ancestries. MedRxiv, 2022.02.28.22271647. https://doi.org/10.1101/2022.02.28.22271647.CrossRefGoogle Scholar
Surendran, P, Drenos, F, Young, R, Warren, H, Cook, JP, Manning, AK, Grarup, N, Sim, X, Barnes, DR, Witkowska, K, Staley, JR, Tragante, V, Tukiainen, T, Yaghootkar, H, Masca, N, Freitag, DF, Ferreira, T, Giannakopoulou, O, Tinker, A, Harakalova, M, Mihailov, E, Liu, C, Kraja, AT, Fallgaard, Nielsen S, Rasheed, A, Samuel, M, Zhao, W, Bonnycastle, LL, Jackson, AU, Narisu, N, Swift, AJ, Southam, L, Marten, J, Huyghe, JR, Stančáková, A, Fava, C, Ohlsson, T, Matchan, A, Stirrups, KE, Bork-Jensen, J, Gjesing, AP, Kontto, J, Perola, M, Shaw-Hawkins, S, Havulinna, AS, Zhang, H, Donnelly, LA, Groves, CJ, Rayner, NW, Neville, MJ, Robertson, NR, Yiorkas, AM, Herzig, K-H, Kajantie, E, Zhang, W, Willems, SM, Lannfelt, L, Malerba, G, Soranzo, N, Trabetti, E, Verweij, N, Evangelou, E, Moayyeri, A, Vergnaud, A-C, Nelson, CP, Poveda, A, Varga, T V, Caslake, M, Craen, AJ de, Trompet, S, Luan, J, Scott, RA, Harris, SE, Liewald, DC, Marioni, R, Menni, C, Farmaki, A-E, Hallmans, G, Renström, F, Huffman, JE, Hassinen, M, Burgess, S, Vasan, RS, Felix, JF, Uria-Nickelsen, M, Malarstig, A, Reily, DF, Hoek, M, Vogt, T, Lin, H, Lieb, W, Traylor, M, Markus, HF, Highland, HM, Justice, AE, Marouli, E, Lindström, J, Uusitupa, M, Komulainen, P, Lakka, TA, Rauramaa, R, Polasek, O, Rudan, I, Rolandsson, O, Franks, PW, Dedoussis, G, Spector, TD, Jousilahti, P, Männistö, S, Deary, IJ, Starr, JM, Langenberg, C, Wareham, NJ, Brown, MJ, Dominiczak, AF, Connell, JM, Jukema, JW, Sattar, N, Ford, I, Packard, CJ, Esko, T, Mägi, R, Metspalu, A, Boer, RA de, Meer, P van der, Harst, P van der, Gambaro, G, Ingelsson, E, Lind, L, Bakker, PI de, Numans, ME, Brandslund, I, Christensen, C, Petersen, ER, Korpi-Hyövälti, E, Oksa, H, Chambers, JC, Kooner, JS, Blakemore, AI, Franks, S, Jarvelin, M-R, Husemoen, LL, Linneberg, A, Skaaby, T, Thuesen, B, Karpe, F, Tuomilehto, J, Doney, AS, Morris, AD, Palmer, CN, Holmen, OL, Hveem, K, Willer, CJ, Tuomi, T, Groop, L, Käräjämäki, A, Palotie, A, Ripatti, S, Salomaa, V, Alam, DS, Shafi, Majumder A Al, Angelantonio, E Di, Chowdhury, R, McCarthy, MI, Poulter, N, Stanton, A V, Sever, P, Amouyel, P, Arveiler, D, Blankenberg, S, Ferrières, J, Kee, F, Kuulasmaa, K, Müller-Nurasyid, M, Veronesi, G, Virtamo, J, Deloukas, P, Elliott, P, Zeggini, E, Kathiresan, S, Melander, O, Kuusisto, J, Laakso, M, Padmanabhan, S, Porteous, D, Hayward, C, Scotland, G, Collins, FS, Mohlke, KL, Hansen, T, Pedersen, O, Boehnke, M, Stringham, HM, Frossard, P, Newton-Cheh, C, Tobin, MD, Nordestgaard, BG, Caulfield, MJ, Mahajan, A, Morris, AP, Tomaszewski, M, Samani, NJ, Saleheen, D, Asselbergs, FW, Lindgren, CM, Danesh, J, Wain, L V, Butterworth, AS, Howson, JM and Munroe, PB (2016) Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics 48(10), 11511161. https://doi.org/10.1038/ng.3654.CrossRefGoogle ScholarPubMed
Takeshita, T, Morimoto, K, Mao, XQ, Hashimoto, T and Furuyama, J (1993). Phenotypic differences in low Km aldehyde dehydrogenase in Japanese workers. Lancet (London, England) 341, 837838.CrossRefGoogle Scholar
Takeuchi, F, Akiyama, M, Matoba, N, Katsuya, T, Nakatochi, M, Tabara, Y, Narita, A, Saw, W-Y, Moon, S, Spracklen, CN, Chai, J-F, Kim, Y-J, Zhang, L, Wang, C, Li, H, Li, H, Wu, J-Y, Dorajoo, R, Nierenberg, JL, Wang, YX, He, J, Bennett, DA, Takahashi, A, Momozawa, Y, Hirata, M, Matsuda, K, Rakugi, H, Nakashima, E, Isono, M, Shirota, M, Hozawa, A, Ichihara, S, Matsubara, T, Yamamoto, K, Kohara, K, Igase, M, Han, S, Gordon-Larsen, P, Huang, W, Lee, NR, Adair, LS, Hwang, MY, Lee, J, Chee, ML, Sabanayagam, C, Zhao, W, Liu, J, Reilly, DF, Sun, L, Huo, S, Edwards, TL, Long, J, Chang, L-C, Chen, C-H, Yuan, J-M, Koh, W-P, Friedlander, Y, Kelly, TN, Wei, W Bin, Xu, L, Cai, H, Xiang, Y-B, Lin, K, Clarke, R, Walters, RG, Millwood, IY, Li, L, Chambers, JC, Kooner, JS, Elliott, P, Harst, P van der, Loh, M, Verweij, N, Zhang, W, Lehne, B, Mateo, Leach I, Drong, A, Abbott, J, Tan, S-T, Scott, WR, Campanella, G, Chadeau-Hyam, M, Afzal, U, Esko, T, Harris, SE, Hartiala, J, Kleber, ME, Saxena, R, Stewart, AFR, Ahluwalia, TS, Aits, I, Couto, Alves ADS, Das, S, Hopewell, JC, Koivula, RW, Lyytikäinen, L-P, Postmus, I, Raitakari, OT, Scott, RA, Sorice, R, Tragante, V, Traglia, M, White, J, Barroso, I, Bjonnes, A, Collins, R, Davies, G, Delgado, G, Doevendans, PA, Franke, L, Gansevoort, RT, Grammer, TB, Grarup, N, Grewal, J, Hartikainen, A-L, Hazen, SL, Hsu, C, Husemoen, LLN, Justesen, JM, Kumari, M, Lieb, W, Liewald, DCM, Mihailov, E, Milani, L, Mills, R, Mononen, N, Nikus, K, Nutile, T, Parish, S, Rolandsson, O, Ruggiero, D, Sala, CF, Snieder, H, Spasø, THW, Spiering, W, Starr, JM, Stott, DJ, Stram, DO, Szymczak, S, Tang, WHW, Trompet, S, Turjanmaa, V, Vaarasmaki, M, Gilst, WH van, Veldhuisen, DJ van, Viikari, JS, Asselbergs, FW, Ciullo, M, Franke, A, Franks, PW, Franks, S, Gross, MD, Hansen, T, Jarvelin, M-R, Jørgensen, T, Jukema, WJ, Kähönen, M, Kivimaki, M, Lehtimäki, T, Linneberg, A, Pedersen, O, Samani, NJ, Toniolo, D, Allayee, H, Deary, IJ, März, W, Metspalu, A, Wijmenga, C, Wolffenbuttel, BHW, Vineis, P, Kyrtopoulos, SA, Kleinjans, JCS, McCarthy, MI, Scott, J, Chen, Z, Sasaki, M, Shu, X-O, Jonas, JB, He, J, Heng, C-K, Chen, Y-T, Zheng, W, Lin, X, Teo, Y-Y, Tai, E-S, Cheng, C-Y, Wong, TY, Sim, X, Mohlke, KL, Yamamoto, M, Kim, B-J, Miki, T, Nabika, T, Yokota, M, Kamatani, Y, Kubo, M and Kato, N (2018) Interethnic analyses of blood pressure loci in populations of east Asian and European descent. Nature Communications, 9(1), 5052. https://doi.org/10.1038/s41467-018-07345-0.CrossRefGoogle ScholarPubMed
Thorleifsson, G, Walters, GB, Gudbjartsson, DF, Steinthorsdottir, V, Sulem, P, Helgadottir, A, Styrkarsdottir, U, Gretarsdottir, S, Thorlacius, S, Jonsdottir, I, Jonsdottir, T, Olafsdottir, EJ, Olafsdottir, GH, Jonsson, T, Jonsson, F, Borch-Johnsen, K, Hansen, T, Andersen, G, Jorgensen, T, Lauritzen, T, Aben, KK, Verbeek, ALM, Roeleveld, N, Kampman, E, Yanek, LR, Becker, LC, Tryggvadottir, L, Rafnar, T, Becker, DM, Gulcher, J, Kiemeney, LA, Pedersen, O, Kong, A, Thorsteinsdottir, U and Stefansson, K (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature Genetics 41(1), 1824. https://doi.org/10.1038/ng.274.CrossRefGoogle ScholarPubMed
Turcot, V, Lu, Y, Highland, HM, Schurmann, C, Justice, AE, Fine, RS, Bradfield, JP, Esko, T, Giri, A, Graff, M, Guo, X, Hendricks, AE, Karaderi, T, Lempradl, A, Locke, AE, Mahajan, A, Marouli, E, Sivapalaratnam, S, Young, KL, Alfred, T, Feitosa, MF, Masca, NGD, Manning, AK, Medina-Gomez, C, Mudgal, P, Ng, MCY, Reiner, AP, Vedantam, S, Willems, SM, Winkler, TW, Abecasis, G, Aben, KK, Alam, DS, Alharthi, SE, Allison, M, Amouyel, P, Asselbergs, FW, Auer, PL, Balkau, B, Bang, LE, Barroso, I, Bastarache, L, Benn, M, Bergmann, S, Bielak, LF, Blüher, M, Boehnke, M, Boeing, H, Boerwinkle, E, Böger, CA, Bork-Jensen, J, Bots, ML, Bottinger, EP, Bowden, DW, Brandslund, I, Breen, G, Brilliant, MH, Broer, L, Brumat, M, Burt, AA, Butterworth, AS, Campbell, PT, Cappellani, S, Carey, DJ, Catamo, E, Caulfield, MJ, Chambers, JC, Chasman, DI, Chen, Y-DI, Chowdhury, R, Christensen, C, Chu, AY, Cocca, M, Collins, FS, Cook, JP, Corley, J, Corominas, Galbany J, Cox, AJ, Crosslin, DS, Cuellar-Partida, G, D’Eustacchio, A, Danesh, J, Davies, G, Bakker, PIW, Groot, MCH, Mutsert, R, Deary, IJ, Dedoussis, G, Demerath, EW, Heijer, M, Hollander, AI, Ruijter, HM, Dennis, JG, Denny, JC, Angelantonio, E Di, Drenos, F, Du, M, Dubé, M-P, Dunning, AM, Easton, DF, Edwards, TL, Ellinghaus, D, Ellinor, PT, Elliott, P, Evangelou, E, Farmaki, A-E, Farooqi, IS, Faul, JD, Fauser, S, Feng, S, Ferrannini, E, Ferrieres, J, Florez, JC, Ford, I, Fornage, M, Franco, OH, Franke, A, Franks, PW, Friedrich, N, Frikke-Schmidt, R, Galesloot, TE, Gan, W, Gandin, I, Gasparini, P, Gibson, J, Giedraitis, V, Gjesing, AP, Gordon-Larsen, P, Gorski, M, Grabe, H-J, Grant, SFA, Grarup, N, Griffiths, HL, Grove, ML, Gudnason, V, Gustafsson, S, Haessler, J, Hakonarson, H, Hammerschlag, AR, Hansen, T, Harris, KM, Harris, TB, Hattersley, AT, Have, CT, Hayward, C, He, L, Heard-Costa, NL, Heath, AC, Heid, IM, Helgeland, Ø, Hernesniemi, J, Hewitt, AW, Holmen, OL, Hovingh, GK, Howson, JMM, Hu, Y, Huang, PL, Huffman, JE, Ikram, MA, Ingelsson, E, Jackson, AU, Jansson, J-H, Jarvik, GP, Jensen, GB, Jia, Y, Johansson, S, Jørgensen, ME, Jørgensen, T, Jukema, JW, Kahali, B, Kahn, RS, Kähönen, M, Kamstrup, PR, Kanoni, S, Kaprio, J, Karaleftheri, M, Kardia, SLR, Karpe, F, Kathiresan, S, Kee, F, Kiemeney, LA, Kim, E, Kitajima, H, Komulainen, P, Kooner, JS, Kooperberg, C, Korhonen, T, Kovacs, P, Kuivaniemi, H, Kutalik, Z, Kuulasmaa, K, Kuusisto, J, Laakso, M, Lakka, TA, Lamparter, D, Lange, EM, Lange, LA, Langenberg, C, Larson, EB, Lee, NR, Lehtimäki, T, Lewis, CE, Li, H, Li, J, Li-Gao, R, Lin, H, Lin, K-H, Lin, L-A, Lin, X, Lind, L, Lindström, J, Linneberg, A, Liu, C-T, Liu, DJ, Liu, Y, Lo, KS, Lophatananon, A, Lotery, AJ, Loukola, A, Luan, J, Lubitz, SA, Lyytikäinen, L-P, Männistö, S, Marenne, G, Mazul, AL, McCarthy, MI, McKean-Cowdin, R, Medland, SE, Meidtner, K, Milani, L, Mistry, V, Mitchell, P, Mohlke, KL, Moilanen, L, Moitry, M, Montgomery, GW, Mook-Kanamori, DO, Moore, C, Mori, TA, Morris, AD, Morris, AP, Müller-Nurasyid, M, Munroe, PB, Nalls, MA, Narisu, N, Nelson, CP, Neville, M, Nielsen, SF, Nikus, K, Njølstad, PR, Nordestgaard, BG, Nyholt, DR, O’Connel, JR, O’Donoghue, ML, Olde, Loohuis LM, Ophoff, RA, Owen, KR, Packard, CJ, Padmanabhan, S, Palmer, CNA, Palmer, ND, Pasterkamp, G, Patel, AP, Pattie, A, Pedersen, O, Peissig, PL, Peloso, GM, Pennell, CE, Perola, M, Perry, JA, Perry, JRB, Pers, TH, Person, TN, Peters, A, Petersen, ERB, Peyser, PA, Pirie, A, Polasek, O, Polderman, TJ, Puolijoki, H, Raitakari, OT, Rasheed, A, Rauramaa, R, Reilly, DF, Renström, F, Rheinberger, M, Ridker, PM, Rioux, JD, Rivas, MA, Roberts, DJ, Robertson, NR, Robino, A, Rolandsson, O, Rudan, I, Ruth, KS, Saleheen, D, Salomaa, V, Samani, NJ, Sapkota, Y and Sattar, N (2018) Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics 50(1), 2641. https://doi.org/10.1038/s41588-017-0011-x.CrossRefGoogle ScholarPubMed
van der Harst, P and Verweij, N (2018) Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circulation Research 122(3), 433443. https://doi.org/10.1161/CIRCRESAHA.117.312086.CrossRefGoogle ScholarPubMed
Vassy, JL, Durant, NH, Kabagambe, EK, Carnethon, MR, Rasmussen-Torvik, LJ, Fornage, M, Lewis, CE, Siscovick, DS and Meigs, JB (2012a) A genotype risk score predicts type 2 diabetes from young adulthood: The CARDIA study. Diabetologia 55(10), 26042612. https://doi.org/10.1007/s00125-012-2637-7.CrossRefGoogle ScholarPubMed
Walford, GA, Green, T, Neale, B, Isakova, T, Rotter, JI, Grant, SFA, Fox, CS, Pankow, JS, Wilson, JG, Meigs, JB, Siscovick, DS, Bowden, DW, Daly, MJ and Florez, JC (2012) Common genetic variants differentially influence the transition from clinically defined states of fasting glucose metabolism. Diabetologia 55(2), 331339. https://doi.org/10.1007/s00125-011-2353-8.CrossRefGoogle ScholarPubMed
Wang, T, Zhao, Z, Yu, X, Zeng, T, Xu, M, Xu, Y, Hu, R, Chen, G, Su, Q, Mu, Y, Chen, L, Tang, X, Yan, L, Qin, G, Wan, Q, Gao, Z, Wang, G, Shen, F, Luo, Z, Qin, Y, Chen, L, Huo, Y, Li, Q, Ye, Z, Zhang, Y, Liu, C, Wang, Y, Wu, S, Yang, T, Deng, H, Zhao, J, Xu, Y, Li, M, Chen, Y, Wang, S, Ning, G, Bi, Y, Shi, L, Lu, J and Wang, W (2021) Age-specific modifiable risk factor profiles for cardiovascular disease and all-cause mortality: A nationwide, population-based, prospective cohort study. The Lancet Regional Health – Western Pacific 17, 100277. https://doi.org/10.1016/j.lanwpc.2021.100277.CrossRefGoogle ScholarPubMed
Wehby, GL, Domingue, BW and Wolinsky, FD (2018) Genetic risks for chronic conditions: Implications for long-term wellbeing. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 73(4), 477483. https://doi.org/10.1093/gerona/glx154.CrossRefGoogle ScholarPubMed
Willer, CJ, Speliotes, EK, Loos, RJF, Li, S, Lindgren, CM, Heid, IM, Berndt, SI, Elliott, AL, Jackson, AU, Lamina, C, Lettre, G, Lim, N, Lyon, HN, McCarroll, SA, Papadakis, K, Qi, L, Randall, JC, Roccasecca, RM, Sanna, S, Scheet, P, Weedon, MN, Wheeler, E, Zhao, JH, Jacobs, LC, Prokopenko, I, Soranzo, N, Tanaka, T, Timpson, NJ, Almgren, P, Bennett, A, Bergman, RN, Bingham, SA, Bonnycastle, LL, Brown, M, Burtt, NP, Chines, P, Coin, L, Collins, FS, Connell, JM, Cooper, C, Smith, GD, Dennison, EM, Deodhar, P, Elliott, P, Erdos, MR, Estrada, K, Evans, DM, Gianniny, L, Gieger, C, Gillson, CJ, Guiducci, C, Hackett, R, Hadley, D, Hall, AS, Havulinna, AS, Hebebrand, J, Hofman, A, Isomaa, B, Jacobs, KB, Johnson, T, Jousilahti, P, Jovanovic, Z, Khaw, K-T, Kraft, P, Kuokkanen, M, Kuusisto, J, Laitinen, J, Lakatta, EG, Luan, J, Luben, RN, Mangino, M, McArdle, WL, Meitinger, T, Mulas, A, Munroe, PB, Narisu, N, Ness, AR, Northstone, K, O’Rahilly, S, Purmann, C, Rees, MG, Ridderstråle, M, Ring, SM, Rivadeneira, F, Ruokonen, A, Sandhu, MS, Saramies, J, Scott, LJ, Scuteri, A, Silander, K, Sims, MA, Song, K, Stephens, J, Stevens, S, Stringham, HM, Tung, YCL, Valle, TT, Duijn, CM Van, Vimaleswaran, KS, Vollenweider, P, Waeber, G, Wallace, C, Watanabe, RM, Waterworth, DM, Watkins, N, Witteman, JCM, Zeggini, E, Zhai, G, Zillikens, MC, Altshuler, D, Caulfield, MJ, Chanock, SJ, Farooqi, IS, Ferrucci, L, Guralnik, JM, Hattersley, AT, Hu, FB, Jarvelin, M-R, Laakso, M, Mooser, V, Ong, KK, Ouwehand, WH, Salomaa, V, Samani, NJ, Spector, TD, Tuomi, T, Tuomilehto, J, Uda, M, Uitterlinden, AG, Wareham, NJ, Deloukas, P, Frayling, TM, Groop, LC, Hayes, RB, Hunter, DJ, Mohlke, KL, Peltonen, L, Schlessinger, D, Strachan, DP, Wichmann, H-E, McCarthy, MI, Boehnke, M, Barroso, I, Abecasis, GR and Hirschhorn, JN (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nature Genetics 41(1), 2534. https://doi.org/10.1038/ng.287.Google ScholarPubMed
Wilson, JF, Weale, ME, Smith, AC, Gratrix, F, Fletcher, B, Thomas, MG, Bradman, N and Goldstein, DB (2001) Population genetic structure of variable drug response. Nature Genetics 29(3), 265269. https://doi.org/10.1038/ng761.CrossRefGoogle ScholarPubMed
Woodward, AA, Urbanowicz, RJ, Naj, AC and Moore, JH (2022) Genetic heterogeneity: Challenges, impacts, and methods through an associative lens. Genetic Epidemiology 46(8), 555571. https://doi.org/10.1002/gepi.22497.CrossRefGoogle ScholarPubMed
Wright, JTJ, Dunn, JK, Cutler, JA, Davis, BR, Cushman, WC, Ford, CE, Haywood, LJ, Leenen, FHH, Margolis, KL, Papademetriou, V, Probstfield, JL, Whelton, PK and Habib, GB (2005) Outcomes in hypertensive black and nonblack patients treated with chlorthalidone, amlodipine, and lisinopril. JAMA 293(13), 15951608. https://doi.org/10.1001/jama.293.13.1595.CrossRefGoogle ScholarPubMed
Yahashi, Y, Kario, K, Shimada, K and Matsuo, M (1998) The 27-bp repeat polymorphism in intron 4 of the endothelial cell nitric oxide synthase gene and ischemic stroke in a Japanese population. Blood Coagulation & Fibrinolysis: An International Journal in Haemostasis and Thrombosis 9(5), 405409. https://doi.org/10.1097/00001721-199807000-00002.CrossRefGoogle Scholar
Yamashita, T, Inoue, H, Okumura, K, Atarashi, H and Origasa, H (2015) Warfarin anticoagulation intensity in Japanese nonvalvular atrial fibrillation patients: A J-RHYTHM registry analysis. Journal of Cardiology 65(3), 175177. https://doi.org/10.1016/j.jjcc.2014.07.013.CrossRefGoogle ScholarPubMed
Yang, J, Bakshi, A, Zhu, Z, Hemani, G, Vinkhuyzen, AAE, Lee, SH, Robinson, MR, Perry, JRB, Nolte, IM, Vliet-Ostaptchouk, J V van, Snieder, H, Esko, T, Milani, L, Mägi, R, Metspalu, A, Hamsten, A, Magnusson, PKE, Pedersen, NL, Ingelsson, E, Soranzo, N, Keller, MC, Wray, NR, Goddard, ME, Visscher, PM and Study, TLC (2015) Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nature Genetics 47(10), 11141120. https://doi.org/10.1038/ng.3390.CrossRefGoogle ScholarPubMed
You, JHS, Chan, FWH, Wong, RSM and Cheng, G (2005) Is INR between 2.0 and 3.0 the optimal level for Chinese patients on warfarin therapy for moderate-intensity anticoagulation? British Journal of Clinical Pharmacology 59(5), 582587. https://doi.org/10.1111/j.1365-2125.2005.02361.x.CrossRefGoogle ScholarPubMed
Yusuf, S, Joseph, P, Rangarajan, S, Islam, S, Mente, A, Hystad, P, Brauer, M, Kutty, VR, Gupta, R, Wielgosz, A, AlHabib, KF, Dans, A, Lopez-Jaramillo, P, Avezum, A, Lanas, F, Oguz, A, Kruger, IM, Diaz, R, Yusoff, K, Mony, P, Chifamba, J, Yeates, K, Kelishadi, R, Yusufali, A, Khatib, R, Rahman, O, Zatonska, K, Iqbal, R, Wei, L, Bo, H, Rosengren, A, Kaur, M, Mohan, V, Lear, SA, Teo, KK, Leong, D, O’Donnell, M, McKee, M and Dagenais, G (2020) Modifiable risk factors, cardiovascular disease, and mortality in 155,722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. The Lancet 395(10226), 795808. https://doi.org/10.1016/S0140-6736(19)32008-2.CrossRefGoogle ScholarPubMed
Zerba, KE, Ferrell, RE and Sing, CF (1996) Genotype-environment interaction: Apolipoprotein E (ApoE) gene effects and age as an index of time and spatial context in the human. Genetics 143(1), 463478. https://doi.org/10.1093/genetics/143.1.463.CrossRefGoogle ScholarPubMed
Zerba, KE, Ferrell, RE and Sing, CF (2000) Complex adaptive systems and human health: The influence of common genotypes of the apolipoprotein E (ApoE) gene polymorphism and age on the relational order within a field of lipid metabolism traits. Human Genetics 107(5), 466475. https://doi.org/10.1007/s004390000394.CrossRefGoogle ScholarPubMed
Zerba, KE and Sing, CF (1993) The role of genome type–environment interaction and time in understanding the impact of genetic polymorphisms on lipid metabolism. Current Opinion in Lipidology, 4(2), 152162. Available at https://journals.lww.com/co-lipidology/Fulltext/1993/04000/The_role_of_genome_type_environment_interaction.11.aspxCrossRefGoogle Scholar
Zhao, G, Marceau, R, Zhang, D and Tzeng, J-Y (2015) Assessing gene–environment interactions for common and rare variants with binary traits using gene-trait similarity regression. Genetics 199(3), 695710. https://doi.org/10.1534/genetics.114.171686.CrossRefGoogle ScholarPubMed
Zheng, J, Zhang, Y, Rasheed, H, Walker, V, Sugawara, Y, Li, J, Leng, Y, Elsworth, B, Wootton, RE, Fang, S, Yang, Q, Burgess, S, Haycock, PC, Borges, MC, Cho, Y, Carnegie, R, Howell, A, Robinson, J, Thomas, LF, Brumpton, BM, Hveem, K, Hallan, S, Franceschini, N, Morris, AP, Köttgen, A, Pattaro, C, Wuttke, M, Yamamoto, M, Kashihara, N, Akiyama, M, Kanai, M, Matsuda, K, Kamatani, Y, Okada, Y, Walters, R, Millwood, IY, Chen, Z, Davey, Smith G, Barbour, S, Yu, C, Åsvold, BO, Zhang, H and Gaunt, TR (2022) Trans-ethnic Mendelian-randomization study reveals causal relationships between cardiometabolic factors and chronic kidney disease. International Journal of Epidemiology 50(6), 19952010. https://doi.org/10.1093/ije/dyab203.CrossRefGoogle ScholarPubMed
Figure 0

Figure 1. Precision medicine approaches in cardiovascular disease (CVD) and challenges to overcome. Multi-ancestry genetic studies play a pivotal role in advancing precision medicine. Comparisons of ancestry-specific and trans-ancestry GWAS findings provide insights into CVD aetiology and its heterogeneity. Secondary analyses of GWAS data, notably using Mendelian randomisation methods, provide additional insights into causal relationships between cardiometabolic risk factors and CVD outcomes. This allows for risk factor prioritisation and optimised risk stratification in diverse ancestry population groups. Integrating ancestry-specific GWAS associations in polygenic risk scores allows for improved predictability of CVD outcomes. Together these approaches contribute to the improved primary prevention, diagnosis and prognosis and targeted therapeutics of CVD. Figure created using BioRender.com (2019).

Figure 1

Table 1. Examples of genes implicated in different CVD outcomes and risk factors that confer heterogeneity across ancestries

Figure 2

Figure 2. Multi-ancestry pharmacogenetics in the scope of personalised drug therapy. Figure created using BioRender.com.

Figure 3

Table 2. Influence of ancestry on drug response

Author comment: Genetic heterogeneity in cardiovascular disease across ancestries: insights for mechanisms and therapeutic intervention — R0/PR1

Comments

No accompanying comment.

Review: Genetic heterogeneity in cardiovascular disease across ancestries: insights for mechanisms and therapeutic intervention — R0/PR2

Conflict of interest statement

I have no competing interests to declare

Comments

Comments to Author: This article gives and overview how CVD and potential mechanism for CVD differ by ancestry due to genetic heterogeneity. The authors also describe how this genetic heterogeneity is being utilized to inform the development of potential drug development and therapeutic interventions. The role of genetics in the drug development process are illustrated using exemplars of polygenetic risk scores and Mendelian Randomization studies for CAD and stroke and their modifiable risk factors, such as BMI and lipids in different ancestry groups.

1. On page 5 the authors make the point that “Whilst there are other CVD endpoints and modifiable risk factors, these few were selected based on their burden and contributions to CVD.” This seems reasonable but it was not clear whether there was a systematic search strategy utilized for the studies included in the review. It would be better if this was the case as it seems as if studies have been cherry-picked. I would like to see the search strategy reported with clear inclusion and exclusion criteria for a scoping review or something similar.

2. The authors mention development of therapeutic targets for ALDH2 for alcohol use disorder. This is interesting but wasn’t there a planned trial targeting AUD using HORIZANT in extended-release tablets that was unable to be conducted due to ethical issues. Would Antabuse potentially be limited by the same issues?

3. The paper by Sun et al. (Nature Medicine https://doi.org/10.1038/s41591-019-0366-x ) that showed concordance between observational, Mendelian Randomization and RCT data for the opposing relationship of LDL-c with ischaemic and haemorrhagic stroke in a Chinese population should be included as it provides good evidence for benefits and harm for LDL lowering for CHD and stroke.

4. I would have liked to see a section on “fairness and bias” included in the review with recommendations on how the representation of different ancestries in CVD precision medicine research can be improved as well as strategies to empower researchers from low resource settings. Also how the findings of research will be used is also important as this could exacerbate inequalities and bias against different ancestries (e.g. differences in drug responses).

5. Table 2 reports identical “ancestral differences” for CCB and Diuretics. This seems to be an error.

6. There are several typographical errors throughout the manuscript. For example on page 5 the authors wrote “…it also allude to an individual’s phenotype…“ should be “it also alludes to an individual’s phenotype…”. On page 6 “with established risk facts….” Should be “…established risk factors…”

Recommendation: Genetic heterogeneity in cardiovascular disease across ancestries: insights for mechanisms and therapeutic intervention — R0/PR3

Comments

No accompanying comment.

Decision: Genetic heterogeneity in cardiovascular disease across ancestries: insights for mechanisms and therapeutic intervention — R0/PR4

Comments

No accompanying comment.

Author comment: Genetic heterogeneity in cardiovascular disease across ancestries: insights for mechanisms and therapeutic intervention — R1/PR5

Comments

Dear Editor,

The revisions have now been made, as requested. In undertaking this process, the expertise of an additional co-author (Segun Fatumo) was introduced, and all authors are in agreement with this. Prof. Fatumo critically revised the material for intellectual content and has agreed to be a co-author.

Best wishes,

Dipender

Review: Genetic heterogeneity in cardiovascular disease across ancestries: insights for mechanisms and therapeutic intervention — R1/PR6

Conflict of interest statement

I have no competing interests to declare

Comments

Comments to Author: The authors have responded satisfactorily to all my comments and I have no further comments to make.

Recommendation: Genetic heterogeneity in cardiovascular disease across ancestries: insights for mechanisms and therapeutic intervention — R1/PR7

Comments

No accompanying comment.

Decision: Genetic heterogeneity in cardiovascular disease across ancestries: insights for mechanisms and therapeutic intervention — R1/PR8

Comments

No accompanying comment.