Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T17:39:06.938Z Has data issue: false hasContentIssue false

1-Octen-3-ol is repellent to Ips pini (Coleoptera: Curculionidae: Scolytinae) in the midwestern United States

Published online by Cambridge University Press:  02 April 2012

Therese M. Poland*
Affiliation:
United States Department of Agriculture, Forest Service, Northern Research Station, Room 220, 1407 South Harrison Road, East Lansing, Michigan 48823, United States of America
Deepa S. Pureswaran
Affiliation:
Canadian Forest Service, Natural Resources Canada, P.O. Box 4000, 1350 Regent Street, Fredericton, New Brunswick, Canada E3B 5P7
Tina M. Ciaramitaro
Affiliation:
Department of Entomology, 243 Natural Sciences, Michigan State University, East Lansing, Michigan 48824, United States of America
John H. Borden
Affiliation:
Contech Enterprises Inc., 7572 Progress Way, Delta, British Columbia, Canada V4G 1E9
*
1Corresponding author (e-mail: tpoland@fs.fed.us).

Abstract

In field experiments at three sites in Michigan and Ohio we tested the activity of 1-octen-3-ol in combination with ipsdienol, the aggregation pheromone of the pine engraver, Ips pini (Say). When 1-octen-3-ol was added to funnel traps baited with ipsdienol, significantly fewer beetles of either sex were captured than in traps baited with ipsdienol alone. This result suggests that the compound is potentially repellent and interrupts the response of beetles to their aggregation pheromone, and is consistent with previous reports of its inhibition of aggregation behaviour in other bark beetles.

Résumé

Dans des expériences sur le terrain dans trois sites du Michigan et de l’Ohio, nous avons testé l’activité du 1-octén-3-ol en combinaison avec l’ipsdiénol, la phéromone d’agrégation du scolyte du pin, Ips pini (Say). Quand on ajoute du 1-octén-3-ol aux pièges à entonnoir garnis d’ipsdiénol, les captures des coléoptères des deux sexes sont significativement moins importantes que dans les pièges munis d’ipsdiénol seul. Ces résultats indiquent que ce composé est potentiellement répulsif et perturbe la réaction des coléoptères à leur phéromone d’agrégation. Cette observation est en accord avec les inhibitions du comportement d’agrégation observées chez les autres scolytes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J., and von Sydow, E. 1964. The aroma of black currants. Acta Chemica Scandinavica, 18: 11051114.CrossRefGoogle Scholar
Anjou, K., and von Sydow, E. 1967. The aroma of cranberries. Acta Chemica Scandinavica, 21: 945952.CrossRefGoogle ScholarPubMed
Assaf, S., Hadar, Y., and Dosoretz, C.G. 1995. Biosynthesis of 13-hydroperoxylineolate, 10-oxodecenoic acid, and 1-octen-3-ol from linoleic acid by a mycelial-pellet homogenate of Pleurotus pulmonarius. Journal of Agricultural and Food Chemistry, 43: 21732178.CrossRefGoogle Scholar
Buttery, R.G., Siefert, R.M., and Ling, L.C. 1975. Characterisation of some volatile constituents of dry red beans. Journal of Agricultural and Food Chemistry, 23: 516519.CrossRefGoogle ScholarPubMed
Day, R.W., and Quinn, G.P. 1989. Comparisons of treatments after analysis of variance in ecology. Ecological Monographs, 59: 433463.CrossRefGoogle Scholar
Hall, D.R., Beevor, P.S., Cork, A., Nesbitt, B.F., and Vale, G.A. 1984. 1-Octen-3-ol: a potent olfactory stimulant and attractant for tsetse isolated from cattle odours. Insect Science and its Applications, 5: 335339.Google Scholar
Kaminski, E., Libbey, L.M., Stawiki, S., and Wasowicz, E. 1972. Identification of the predominant volatile compounds produced by Aspergillus flavus. Applied Microbiology, 24: 721726.CrossRefGoogle ScholarPubMed
Klimetzek, D. von, Kohler, J., Krohn, S., and Francke, W.. 1989. Das Pheromone-system des Waldreben-Barkenkäfers, Xylocleptus bispinus Duft. (Col. Scolytidae). Journal of Applied Entomology, 107: 304309.CrossRefGoogle Scholar
Lanier, G.N., and Cameron, E.A. 1969. Secondary sexual characteristics in the North American species of the genus Ips (Coleoptera: Scolytidae). The Canadian Entomologist, 101: 862870.CrossRefGoogle Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). The Canadian Entomologist, 115: 299302.CrossRefGoogle Scholar
Pierce, A.M., Pierce, H.D. Jr., Borden, J.H., and Oehlschlager, A.C. 1989. Production dynamics of cucujolide pheromonesand identification of 1-octen-3-ol as a new aggregation pheromone for Oryzaephilus surinamensis and O. mercator (Coleoptera: Cucujidae). Environmental Entomology, 18: 747755.CrossRefGoogle Scholar
Pierce, H.D. Jr., Pierce, A.M., Johnston, B.D., Oehlschlager, A.C., and Borden, J.H. 1988. Aggregation pheromone of square-necked grain beetle, Cathartus quadricollis (Guer.). Journal of Chemical Ecology, 14: 21692184.CrossRefGoogle ScholarPubMed
Pureswaran, D.S., and Borden, J.H. 2004. New repellent semiochemicals for three species of Dendroctonus (Coleoptera: Scolytidae). Chemoecology, 14: 6775.CrossRefGoogle Scholar
Pureswaran, D.S., Gries, R., and Borden, J.H. 2004. Antennal responses of four species of tree-killing bark beetles (Coleoptera: Scolytidae) to volatiles collected from beetles, and their host and nonhost conifers. Chemoecology, 14: 5966.CrossRefGoogle Scholar
Raymer, J., Wiesler, D., Novotny, M., Asa, C., Seal, U.S., and Mech, L.D. 1985. Chemical investigations of wolf (Canis lupus) anal-sac secretion in relation to breeding season. Journal of Chemical Ecology, 11: 593608.CrossRefGoogle ScholarPubMed
SAS Institute Inc. 20022003. SAS/STAT® Release 9.1; user's guide. SAS Institute Inc., Cary, North Carolina.Google Scholar
Stevens, M.A., Lindsay, R.C., Libbey, L.M., and Frazier, W.A. 1967. Volatile components of canned snap beans (Phaseolus vulgaris L.). Proceedings of the American Society for Horticultural Science, 91: 833845.Google Scholar
Tressel, R., Bahri, D., and Engel, K.-H. 1982. Formation of eight-carbon and ten-carbon components in mushrooms (Agaricus campestris). Journal of Agricultural and Food Chemistry, 30: 8993.CrossRefGoogle Scholar
Zhang, Q.-H., Schlyter, F., and Birgersson, G. 2000. Bark volatiles from nonhost deciduous trees of spruce bark beetle, Ips typographus (L.) (Coleoptera: Scolytidae): chemical and electrophysiological analysis. Chemoecology, 10: 6980.CrossRefGoogle Scholar
Zhang, Q.-H., Liu, G.-T., Schlyter, F., and Birgersson, G., Anderson, P., and Valeur, P. 2001. Olfactory responses of Ips duplicatus from Inner Mongolia, China to nonhost leaf and bark volatiles. Journal of Chemical Ecology, 27: 9951009.CrossRefGoogle ScholarPubMed