Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T23:53:36.512Z Has data issue: false hasContentIssue false

Abiotic conditions rather than resource availability cues determine aerial dispersal behaviour in spiderlings of Dolomedes triton (Araneae: Pisauridae)

Published online by Cambridge University Press:  05 February 2013

Carol M. Frost*
Affiliation:
Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, Canada T6G 2H1
Alice K. Graham
Affiliation:
Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, Canada T6G 2H1
John R. Spence
Affiliation:
Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, Canada T6G 2H1
*
2Corresponding author: School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand (e-mail: cmfrost@ualberta.ca).

Abstract

Many species respond to risks and benefits of dispersal that vary over the short term through condition-dependent dispersal. We used wind tunnels to investigate how abiotic factors, spiderling age, and indicators of environmental quality affect aerial dispersal behaviour of spiderlings in Dolomedes triton (Walckenaer) (Araneae: Pisauridae), a denizen of temporary habitats. More than half of all spiderlings exhibited preballooning, ballooning, or spanning behaviours. Warm temperatures (>22.5 °C) and low wind speeds (<2.0 m/second) increased aerial dispersal. Aerial dispersal behaviour increased significantly until 5 days after hatch, after which it decreased, coinciding with the onset of active hunting by spiderlings. In contrast, cues about ambient food availability (egg sac number and food limitation of the mother) and potential resource competition or risk of cannibalism (conspecific density) did not affect aerial dispersal propensity. Offspring from different females ballooned in different proportions, except at the peak of dispersal, but a female's reproductive output and propensity of her offspring to balloon were uncorrelated. Thus, it appears that spiderlings of D. triton adopt a fixed strategy of high dispersal rate under optimal abiotic conditions, rather than reducing dispersal in response to cues about local food availability or conspecific density.

Résumé

En réponse aux risques et bénéfices de la dispersion qui varient à court terme, de nombreuses espèces adaptent leur dispersion aux conditions environnementales. Nous avons utilisé des tubes ventilés pour évaluer l'influence des facteurs abiotiques, de l’âge des araignées et d'indicateurs environnementaux sur le comportement de dispersion aérienne d'araignées juvéniles Dolomedes triton (Walckenaer) (Araneae: Pisauridae) peuplant des habitats temporaires. La majorité des juvéniles ont montré un pré-ballonnement, ballonnement, ou un comportement de « spanning ». Les températures chaudes (>22.5 °C) et les vents faibles (<2.0 m/s) ont favorisé leur dispersion. Les comportements facilitant la dispersion se sont significativement accentués jusqu'au 5e jour après l’éclosion, pour ensuite diminuer lors de l'instauration de la prédation active. En revanche, les facteurs indiquant la disponibilité des ressources (nombre de sacs d’œufs, restriction alimentaire maternelle), la compétition intraspécifique ou le cannibalisme (densité intraspécifique), n'ont pas influencé leur propension à la dispersion. En dehors du pic de dispersion, la proportion de juvéniles ballonnés différait selon les femelles, mais leur fertilité n’était pas corrélée avec la tendance au ballonnement de leur progéniture. Les juvéniles de D. triton auraient donc adopté une stratégie favorisant d'importants taux de dispersion lors de conditions abiotiques optimales, au lieu de les réduire lors de limitations liées aux ressources ou à la densité intraspécifique.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, N.M. 2000. The evolution of dispersal dimorphism and other life history traits in water striders (Hemiptera: Gerridae). Entomological Science, 3: 187199.Google Scholar
Barth, F.G., Komarek, S., Humphrey, J.A.C., Treidler, B. 1991. Drop and swing dispersal behaviour of a tropical wandering spider: experiments and numerical model. Journal of Comparative Physiology A, 169: 313322.CrossRefGoogle Scholar
Bell, J.R., Bohan, D.A., Shaw, E.M., Weyman, G.S. 2005. Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bulletin of Entomological Research, 95: 69114.CrossRefGoogle ScholarPubMed
Bishop, L. 1990. Meteorological aspects of spider ballooning. Environmental Entomology, 19: 13811387.CrossRefGoogle Scholar
Bonte, D., Borre, J.V., Lens, L., Maelfait, J.-P. 2006. Geographical variation in wolf spider dispersal behaviour is related to landscape structure. Animal Behaviour, 72: 655662.CrossRefGoogle Scholar
Bonte, D., Deblauwe, I., Maelfait, J.-P. 2003. Environmental and genetic background of tiptoe-initiating behaviour in the dwarfspider Erigone atra. Animal Behaviour, 66: 169174.CrossRefGoogle Scholar
Bonte, D.Lens, L. 2007. Heritability of spider ballooning motivation under different wind velocities. Evolutionary Ecology Research, 9: 111.Google Scholar
Bowler, D.E.Benton, T.G. 2005. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biological Review, 80: 205225.CrossRefGoogle ScholarPubMed
Carico, J.E. 1973. The Nearctic species of the genus Dolomedes (Araneae: Pisauridae). Bulletin of the Museum of Comparative Zoology, 144: 435488.Google Scholar
Clobert, J., Ims, R.A., Rousset, F. 2004. Causes, mechanisms, and consequences of dispersal. In Ecology, genetics, and evolution of metapopulations. Edited by I. Hanski and O.E. Gaggiotti. Elsevier Academic Press, Burlington, Massachusetts, United States of America. pp. 307335.CrossRefGoogle Scholar
Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S., Massot, M. 2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecology Letters, 12: 197209.CrossRefGoogle ScholarPubMed
Coulson, S.J., Hodkinson, L.D., Webb, N.R. 2003. Aerial dispersal of invertebrates over a high-Arctic glacier foreland: Midtre Lovénbreen, Svalbard. Polar Biology, 26: 530537.CrossRefGoogle Scholar
Coyle, F.A. 1983. Aerial dispersal by mygalomorph spiderlings (Araneae, Mygalomorphae). Journal of Arachnology, 11: 283286.Google Scholar
Crawford, R.L., Sugg, P.M., Edwards, J.S. 1995. Spider arrival and primary establishment on terrain depopulated by volcanic eruption at Mount St. Helens, Washington. American Midland Naturalist, 133: 6075.CrossRefGoogle Scholar
De Meester, N.Bonte, D. 2010. Information use and density-dependent emigration in an agrobiont spider. Behavioural Ecology, 21: 992998.CrossRefGoogle Scholar
den Boer, P.J. 1990. The survival value of dispersal in terrestrial arthropods. Biological Conservation, 54: 175192.CrossRefGoogle Scholar
Drake, V.A.Farrow, R.A. 1988. The influence of atmospheric structure and motions on insect migration. Annual Review of Entomology, 33: 183210.CrossRefGoogle Scholar
Eberhard, W.G. 1987. How spiders initiate airborne lines. Journal of Arachnology, 15: 19.Google Scholar
Entling, M.H., Stämpfli, K., Ovaskainen, O. 2011. Increased propensity for aerial dispersal in disturbed habitats due to intraspecific variation and species turnover. Oikos, 120: 10991109.CrossRefGoogle Scholar
Figiel, C.R. Jr.Miller, G.L. 1994. Effects of fish on the growth and survival of two fishing spider populations (Dolomedes triton; Araneae, Pisauridae). Journal of Arachnology, 22: 185189.Google Scholar
Freeman, J.A. 1946. The distribution of spiders and mites up to 300 ft. in the air. Journal of Animal Ecology, 15: 6974.CrossRefGoogle Scholar
Glick, P.A. 1939. The distribution of insects, spiders and mites within the air. Technical Bulletin of the United States Department of Agriculture, 673: 1151.Google Scholar
Graham, A. 2002. Wetland spider diversity and ecology in Alberta: 4. Mechanisms and regulation of ballooning in the fishing spider Dolomedes triton Walckenaer (Araneae: Pisauridae). M.Sc. Thesis. University of Alberta, Edmonton, Alberta, Canada. pp. 82–90.Google Scholar
Greenstone, M.H. 1990. Meteorological determinants of spider ballooning: the roles of thermals vs. the vertical windspeed gradient in becoming airborne. Oecologia, 84: 164168.CrossRefGoogle ScholarPubMed
Halley, J.M. 1996. Ecology, evolution and 1/f-noise. Trends in Ecology and Evolution, 11: 3337.CrossRefGoogle Scholar
Halley, J.M., Thomas, C.F.G., Jepson, P.C. 1996. A model for the spatial dynamics of linyphiid spiders in farmland. Journal of Applied Ecology, 33: 471492.CrossRefGoogle Scholar
Humphrey, J.A.C. 1987. Fluid mechanic constraints on spider ballooning. Oecologia, 73: 469477.CrossRefGoogle ScholarPubMed
Ims, R.A.Hjermann, D.Ø. 2004. Condition-dependent dispersal. In Dispersal. Edited by J. Clobert, E. Danchin, A.A. Dhondt and J.D. Nichols. Oxford University Press, Oxford, United Kingdom. pp. 203216.Google Scholar
Kreiter, N.A.Wise, D.H. 2001. Prey availability limits fecundity and influences the movement pattern of female fishing spiders. Oecologia, 127: 417424.CrossRefGoogle ScholarPubMed
MacKay, P.A.Wellington, W.G. 1977. Maternal age as a source of variation in the ability of an aphid to produce dispersing forms. Researches on Population Ecology, 18: 195209.CrossRefGoogle Scholar
Massot, M.Clobert, J. 2000. Processes at the origin of similarities in dispersal behaviour among siblings. Journal of Evolutionary Biology, 13: 707719.CrossRefGoogle Scholar
Morse, D.H. 1993. Some determinants of dispersal by crab spiderlings. Ecology, 74: 427432.CrossRefGoogle Scholar
Mrzljak, J.Wiegleb, G. 2000. Spider colonization of former brown coal mining areas – time or structure dependent? Landscape and Urban Planning, 51: 131146.CrossRefGoogle Scholar
Reynolds, A.M., Bohan, D.A., Bell, J.R. 2007. Balloning dispersal in arthropod taxa: conditions at take-off. Biology Letters, 3: 237240.CrossRefGoogle Scholar
Richter, C.J.J. 1970. Aerial dispersal in relation to habitat in eight wolf spider species (Pardosa, Araneae, Lycosidae). Oecologia, 5: 200214.CrossRefGoogle ScholarPubMed
Southwood, T.R.E. 1962. Migration of terrestrial arthropods in relation to habitat. Biological Review, 37: 171214.CrossRefGoogle Scholar
Spence, J.R., Zimmermann, M., Wojcicki, J.P. 1996. Effects of food limitation and sexual cannibalism on reproductive output of the nursery web spider Dolomedes triton (Araneae; Pisauridae). Oikos, 75: 373382.CrossRefGoogle Scholar
Thomas, C.F.G., Brain, P., Jepson, P.C. 2003. Aerial activity of linyphiid spiders: modeling dispersal distances from meteorology and behaviour. Journal of Applied Ecology, 40: 912927.CrossRefGoogle Scholar
Topping, C.J.Sunderland, K.D. 1998. Population dynamics and dispersal of Lepthyphantes tenuis in an ephemeral habitat. Entomologia Experimentalis et Applicata, 87: 2941.CrossRefGoogle Scholar
Vugts, H.F.Van Wingerden, W.K.R.E. 1976. Meteorological aspects of aeronautic behaviour of spiders. Oikos, 27: 433444.CrossRefGoogle Scholar
Weyman, G.S. 1995. Laboratory studies of the factors stimulating ballooning behaviour by linyphiid spiders (Araneae, Linyphiidae). Journal of Arachnology, 23: 7584.Google Scholar
Weyman, G.S.Jepson, P.C. 1994. The effect of food supply on the colonization of barley by aerially dispersing spiders (Araneae). Oecologia, 100: 386390.CrossRefGoogle ScholarPubMed
Weyman, G.S., Jepson, P.C., Sunderland, K.D. 1995. Do seasonal changes in numbers of aerially dispersing spiders reflect population density on the ground or variation in ballooning motivation? Oecologia, 101: 487493.CrossRefGoogle ScholarPubMed
Weyman, G.S., Sunderland, K.D., Fenlon, J.S. 1994. The effect of food deprivation on aeronautic dispersal behaviour (ballooning) in Erigone spp. spiders. Entomologia Experimentalis et Applicata, 73: 121126.CrossRefGoogle Scholar
Weyman, G.S., Sunderland, K.D., Jepson, P.C. 2002. A review of the evolution and mechanisms of ballooning by spiders inhabiting arable farm land. Ethology Ecology & Evolution, 14: 307326.CrossRefGoogle Scholar
Zar, J.H. 1999. Biostatistical analysis, 4th ed. Prentice Hall, Englewood Cliffs, New Jersey, United States of America.Google Scholar
Zera, A.J.Denno, R.F. 1997. Physiology and ecology of dispersal polymorphism in insects. Annual Review of Entomology, 42: 207230.CrossRefGoogle ScholarPubMed
Zimmermann, M.Spence, J.R. 1989. Prey use of the fishing spider Dolomedes triton (Pisauridae, Araneae): an important predator of the neuston community. Oecologia, 80: 187194.CrossRefGoogle ScholarPubMed
Zimmermann, M.Spence, J.R. 1992. Adult population dynamics and reproductive effort of the fishing spider Dolomedes triton (Araneae, Pisauridae) in central Alberta. Canadian Journal of Zoology, 70: 22242233.CrossRefGoogle Scholar
Zimmermann, M.Spence, J.R. 1998. Phenology and life-cycle regulation of the fishing spider Dolomedes triton Walckenaer (Araneae, Pisauridae) in central Alberta. Canadian Journal of Zoology, 76: 295309.CrossRefGoogle Scholar
Supplementary material: Image

Frost supplementary fig 1

Frost supplementary fig 1

Download Frost supplementary fig 1(Image)
Image 18.2 KB
Supplementary material: Image

Frost supplementary fig 2

Frost supplementary fig 2

Download Frost supplementary fig 2(Image)
Image 19.6 KB
Supplementary material: Image

Frost supplementary Fig 3

Frost supplementary Fig 3

Download Frost supplementary Fig 3(Image)
Image 25.9 KB
Supplementary material: File

Frost supplementary material

Frost supplementary material

Download Frost supplementary material(File)
File 45.6 KB