Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T00:13:29.095Z Has data issue: false hasContentIssue false

Activity of flying beetles (Coleoptera) at two heights in canopy gaps and intact forests in a hardwood forest in Quebec

Published online by Cambridge University Press:  02 April 2012

Briana Schroeder
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21 111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
Christopher M. Buddle*
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21 111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
Michel Saint-Germain
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21 111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
*
1Corresponding author (e-mail: chris.buddle@mcgill.ca).

Abstract

We studied the effects of forest height and forest gap on assemblages of flying beetles in an American beech (Fagus grandifolia Ehrh. (Fagaceae) – sugar maple (Acer saccharum Marsh. (Aceraceae)) forest in Quebec. From June until August of 2005, beetles were collected in Lindgren funnel traps placed in the canopy (20–25 m height) and upper understorey (3–5 m height) in proximity to five forest gaps (15–30 m in diameter) (at the edge of the forest opening or within the closed-canopy forest). We collected 1852 beetles representing 38 families and 172 species. Based on rarefaction curves, species richness was significantly higher in the canopy than in the upper understorey. Nonmetric multidimensional scaling ordination revealed a change in species composition in relation to vertical stratification but not to the forest gaps. Our findings confirmed the importance of the vertical forest gradient to overall diversity of forest coleopterans.

Résumé

Nous avons étudié les effets de l'ouverture et de la structure verticale du couvert forestier sur la structure des assemblages de Coléoptères dans une hêtraie (Fagus grandifolia Ehrh., Fagaceae) – érable à sucre (Acer saccharum Marsh., Aceraceae) au Québec. Les Coléoptères ont été échantillonnés à l'aide de pièges Lindgren positionnés dans la canopée (20–25 m de hauteur) et en sous-couvert (5 m de hauteur) à proximité de 5 trouées de 15–30 m de diamètre (en bordure de la trouée versus forêt d'intérieur) et ce du début juin à la fin d'août 2005; 1852 individus appartenant à 172 espèces et 41 familles ont été collectés. La richesse spécifique, estimée à l'aide de courbes de raréfaction, s'est montrée plus élevée dans la canopée. Un cadrage non -métrique multidimensionel a démontré un changement au niveau de la composition spécifique en lien avec la position verticale des pièges, mais non au niveau de la proximité aux trouées. Notre étude confirme que la diversité structurelle fournie par le gradient vertical en forêt contribue de façon importante à la diversité des Coléoptères en milieu forestier.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buddle, C.M., Beguin, J., Bolduc, E., Mercado, A., Sackett, T.E., Selby, R.D., Varady-Szabo, H., and Zeran, R.M. 2005. The importance and use of taxon sampling curves for comparative biodiversity research with forest arthropod assemblages. Canadian Entomologist, 137(1): 120127. doi:10.4039/N04-040.Google Scholar
Darveau, M., Martel, J., DesGranges, L., and Mauffette, Y. 1997. Associations between forest decline and bird and insect communities in northern hardwoods. Canadian Journal of Forest Research, 27(6): 876882. doi:10.1139/cjfr-27-6-876.CrossRefGoogle Scholar
Davidson, D.W. 1997. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biological Journal of the Linnean Society, 61(2): 153181. doi:10.1111/j.1095-8312.1997.tb01785.x.CrossRefGoogle Scholar
Gotelli, N.J., and Entsminger, G.L. 2008. Ecosim: null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear [on-line]. Available from http://garyentsminger.com/ecosim/index.htm [accessed 22 Jan. 2009].Google Scholar
Hill, C.J., and Cermak, M. 1997. A new design and some preliminary results for a flight intercept trap to sample forest canopy arthropods. Australian Journal of Entomology, 36(1): 5155. doi:10.1111/j.1440-6055.1997.tb01431.x.CrossRefGoogle Scholar
Hoonbok, Y., and Moldenke, A. 2005. Response of ground-dwelling arthropods to different thinning intensities in young Douglas fir forests of western Oregon. Environmental Entomology, 34(5): 10711080. doi:10.1603/0046-225X(2005) 034[1071:ROGATD]2.0.CO;2.Google Scholar
Krasny, M.E., and Whitmore, M.C. 1992. Gradual and sudden forest canopy gaps in Allegheny northern hardwood forests. Canadian Journal of Forest Research, 22(2): 139143. doi:10.1139/x92-019.Google Scholar
Langor, D.W., and Spence, J.R. 2006. Arthropods as ecological indicators of sustainability in Canadian forests. Forestry Chronicle, 82: 344350.CrossRefGoogle Scholar
Larrivée, M., and Buddle, C.M. 2009. Diversity of canopy and understorey spiders in north-temperate hardwood forests. Agricultural and Forest Entomology, 11(2): 225237. doi:10.1111/j.1461-9563.2008.00421.x.Google Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). Canadian Entomologist, 115: 299302.Google Scholar
McCune, B., and Grace, J.B. 2002. Analysis of ecological communities. MJM Software Design, Gleneden Beach, Oregon.Google Scholar
Naeem, S. 2002. Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology, 83: 15371552.Google Scholar
SAS Institute Inc. 1999. SAS® statistical package. Version 8.0. SAS Institute Inc, Cary, North Carolina.Google Scholar
Su, J.C., and Woods, S.A. 2001. Importance of sampling along a vertical gradient to compare the insect fauna in managed forests. Environmental Entomology, 30: 400408.CrossRefGoogle Scholar
Ulyshen, M.D., and Hanula, J.L. 2007. A comparison of the beetle (Coleoptera) fauna captured at two heights above the ground in a North American temperate deciduous forest. American Midland Naturalist, 158(2): 260278. doi:10.1674/0003-0031(2007)158[260:ACOTBC]2.0.CO;2.CrossRefGoogle Scholar
Ulyshen, M.D., Hanula, J.L., Horn, S., Kilgo, J.C., and Moorman, C.E. 2005. Herbivorous insect response to group selection cutting in a south-eastern bottomland hardwood forest. Environmental Entomology, 34: 395402.CrossRefGoogle Scholar
Ulyshen, M.D., Hanula, J.L., Horn, S., Kilgo, J.C., and Moorman, C.E. 2006. The response of ground beetles (Coleoptera: Carabidae) to selection cutting in a South Carolina bottomland hardwood forest. Biodiversity and Conservation, 15(1): 261274. doi:10.1007/s10531-004-6899-3.CrossRefGoogle Scholar
Van Bael, S.A., Brawn, J.D., and Robinson, S.K. 2003. Birds defend trees from herbivores in a Neotropical forest canopy. Proc. Natl. Acad. Sci. USA, 100(14): 83048307. PMID:12832618 doi:10.1073/pnas.1431621100.CrossRefGoogle Scholar
Vance, C.C., Kirby, K.R., Malcolm, J.R., and Smith, S.M. 2003. Community composition of longhorned beetles (Coleoptera: Cerambycidae) in the canopy and understory of sugar maple and white pine stands in south-central Ontario. Environmental Entomology, 32: 10661074.CrossRefGoogle Scholar