Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T14:32:59.875Z Has data issue: false hasContentIssue false

ASSOCIATIONS BETWEEN MITES AND OTHER ARTHROPODS IN FOREST FLOOR HABITATS1

Published online by Cambridge University Press:  31 May 2012

Evert E. Lindquist
Affiliation:
Biosystematics Research Institute, Canada Department of Agriculture, Ottawa

Abstract

The evolutionary success of the mites, which rivals that of the insects, is reviewed briefly. A remarkable secondary adaptive radiation apparently occurred in the mites, probably beginning in the late Mesozoic, in conjunction with the major evolution and radiation of the insects and to a lesser extent of the higher plants and the warm-blooded vertebrate animals.

The spectrum of forest floor microhabitats, in which mite–arthropod associations may occur, is discussed. The problems in elucidating the living relationships between mites and other arthropods, due to biological complexities and physical difficulties, are reviewed. Some of the elements of close mite–arthropod associations are discussed, including protected stable habitats provided by insects, shared habitat specificities, regularity of co-occurrence, host specificity, site constancy of mites on their arthropod hosts, and life cycle synchrony.

Examples are given of the apparently few morphological adaptations of insects for accommodating mites. The variety of morphological structures which are adaptations of mites to an association with other arthropods are discussed, particularly regressive modifications. Physiological and behavioral adaptations of mites to secretions or to other actions of their arthropod associates are mentioned. Cases are given showing the different ways in which mites have achieved synchrony of their life cycle with that of their hosts.

Some thoughts on the usefulness of research on the interrelationships between mites and other arthropods conclude the paper.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, J. 1967. Microhabitats of oribatid mites on a forest floor. Bull. nat. Sci. Mus. Tokyo 10: 133138.Google Scholar
Binns, E. S. 1973. Arctoseius cetratus (Sellnick) (Acarina: Ascidae) phoretic on mushroom sciarid flies. Acarologia 14: 350356.Google Scholar
Borror, D. J. and DeLong, D. W.. 1971. An introduction to the study of insects. 3rd ed. Holt, Rinehart and Winston, New York. xiv + 812 pp.Google Scholar
Cooper, K. W. 1955. Venereal transmission of mites by wasps, and some evolutionary problems arising from the remarkable association of Ensliniella trisetosa with the wasp Ancistrocerus antilope. Biology of eumenine wasps II. Trans. Am. ent. Soc. 80: 119174.Google Scholar
Costa, M. 1969. The association between mesostigmatic mites and coprid beetles. Acarologia 11: 411428.Google Scholar
Costa, M. and Hunter, P. E.. 1970. The genus Coleolaelaps Berlese, 1914 (Acarina: Mesostigmata). Redia 52: 323360.Google Scholar
Davis, B. N. K. 1963. A study of micro-arthropod communities in mineral soils near Corby, Northants. J. Anim. Ecol. 32: 4971.CrossRefGoogle Scholar
Donisthorpe, H. St. J. K. 1927. The guests of British ants. Routledge, London. xxiii + 244 pp.Google Scholar
Egan, M. E. and Moss, W. W.. 1969. The life cycle and behavior of a cockroach mite, Proctolaelaps nauphoetae (Acari: Mesostigmata: Ascidae). Notul. Nat., No. 420. 9 pp.Google Scholar
Evans, G. O. 1955. A review of the laelaptid paraphages of the Myriapoda with descriptions of three new species (Acarina: Laelaptidae). Parasitology 45: 352368.CrossRefGoogle ScholarPubMed
Evans, G. O. and Sheals, J. G.. 1959. Three new mesostigmatic mites associated with millipedes in Indonesia. Ent. Ber. 19: 107111.Google Scholar
Fain, A. 1969. Adaptation to parasitism in mites. Acarologia 11: 429449.Google ScholarPubMed
Goulet, H. 1966. The habitat of Platypatrobus Darlington (Coleoptera: Carabidae). Psyche, Camb. 72: 305306.CrossRefGoogle Scholar
Gressitt, J. L. 1966. Epizoic symbiosis: The Papuan weevil genus Gymnopholus (Leptopiinae) symbiotic with cryptogamic plants, oribatid mites, rotifers and nematodes. Pacif. Insects 8: 221280.Google Scholar
Haarløv, N. 1960. Microarthropods from Danish soils. Ecology, Phenology. Oikos, Suppl. 3. 176 pp.Google Scholar
Haarløv, N. and Weis-Fogh, T.. 1953. A microscopical technique for studying the undisturbed texture of soils. Oikos 4: 4457.CrossRefGoogle Scholar
Hammer, M. 1972. Microhabitats of oribatid mites on a Danish woodland floor. Pedobiologia 12: 412423.CrossRefGoogle Scholar
Jalil, M. and Rodriguez, J. G.. 1970. Studies of behavior of Macrocheles muscaedomesticae (Acarina: Macrochelidae) with emphasis on its attraction to the house fly. Ann. ent. Soc. Am. 63: 738744.CrossRefGoogle Scholar
Kielczewski, B., Nawrot, J., and Wisniewski, J.. 1970. Roztocze wystepujace na gmachowce (Camponotus Mayr; Hymenoptera, Formicidae) i w jej gniazdach. Prace Kom. nauk Roln. i Kom. nauk Lesnych. 30: 1726.Google Scholar
Kinn, D. N. 1971. The life cycle and behavior of Cercoleipus coelonotus (Acarina: Mesostigmata), including a survey of phoretic mite associates of California Scolytidae. Univ. Calif. Publs Ent. 65: 162.Google Scholar
Krombein, K. V. 1961. Some symbiotic relations between saproglyphid mites and solitary vespid wasps. J. Wash. Acad. Sci. 51: 8993.Google Scholar
Lanier, G. N. 1970. Biosystematics of the genus Ips (Coleoptera: Scolytidae) in North America. Hopping's group III. Can. Ent. 102: 14041423.CrossRefGoogle Scholar
Lanier, G. N. 1972. Biosystematics of the genus Ips (Coleoptera: Scolytidae) in North America. Hopping's groups IV and X. Can. Ent. 104: 361388.CrossRefGoogle Scholar
Leppik, E. E. 1957. Evolutionary relationship between entomophilous plants and anthophilous insects. Evolution 11: 466481.CrossRefGoogle Scholar
Lindquist, E. E. 1963. A taxonomic review of the genus Hoploseius Berlese (Acarina: Blattisocidae). Can. Ent. 95: 11751185.CrossRefGoogle Scholar
Lindquist, E. E. 1969 a. Review of holarctic tarsonemid mites (Acarina: Prostigmata) parasitizing eggs of ipine bark beetles. Mem. ent. Soc. Can., No. 60. 111 pp.Google Scholar
Lindquist, E. E. 1969 b. Mites and the regulation of bark beetle populations. Proc. 2nd int. Congr. Acarology (Sutton Bonington, England) (1967). Akad. Kiado, Budapest. pp. 389399.Google Scholar
Lindquist, E. E. 1970. Relationships between mites and insects in forest habitats. Can. Ent. 102: 978984.CrossRefGoogle Scholar
MacNulty, B. J. 1971. An introduction to the study of Acari-Insecta associations. Proc. Trans. Ent. nat. Hist. Soc. 4: 4670.Google Scholar
Main, B. Y. 1972. Subphylum V: Chelicerata. In Marshall, A. J. and Williams, W. D. (Eds.), Textbook of zoology, Invertebrates. 7th ed. Macmillan, London. pp. 411480.Google Scholar
Matthewman, W. G. and Pielou, D. P.. 1971. Arthropods inhabiting the sporophores of Fomes fomentarius (Polyporaceae) in Gatineau Park, Quebec. Can. Ent. 103: 775847.CrossRefGoogle Scholar
Moser, J. C. and Roton, L. M.. 1971. Mites associated with southern pine bark beetles in Allen Parish, Louisiana. Can. Ent. 103: 17751798.CrossRefGoogle Scholar
Neumann, K. W. 1943. Die Lebensgeschichte der Käfermilbe Poecilochirus necrophori Vitzt. nebst Beschreibung aller Entwicklungsstufen. Zool. Anz. 142: 121.Google Scholar
Pielou, D. P. and Verma, A. N.. 1968. The arthropod fauna associated with the birch bracket fungus, Polyporus betulinus, in eastern Canada. Can. Ent. 100: 11791199.CrossRefGoogle Scholar
Regenfuss, H. 1968. Untersuchungen zur Morphologie, Systematik und Ökologie der Podapolipidae (Acarina, Tarsonemini). Z. wiss. Zool. 177: 183282.Google Scholar
Regenfuss, H. 1972. Über die Einnischung synhospitaler Parasitenarten auf dem Wirtskörper. Untersuchungen an ektoparasitischen Milben (Podapolipidae) auf Laufkäfern (Carabidae). Z. zool. Systematik u. Evolutionsforschung 10: 4465.CrossRefGoogle Scholar
Ross, H. H. 1965. A textbook of entomology. Wiley, New York. ix + 539 pp.Google Scholar
Samsinak, K. 1965. Relation between mites and insects. Zesz. Probl. Postepow nauk Rolniczych 65: 7787.Google Scholar
Samsinak, K. 1971. Die auf Carabus-Arten (Coleoptera, Adephaga) der palaearktischen Region lebenden Milben der Unterordnung Acariformes (Acari); ihre Taxonomie und Bedeutung für die Lösung zoogeographischer, entwicklungsbeschichtlicher und parasitophyletischer Fragen. Ent. Abhandl. 38: 145234.Google Scholar
Skaife, S. H. 1952. The yellow-banded carpenter bee, Mesotrichia caffra Linn., and its symbiontic mite, Dinogamasus braunsi Vitzthum. J. ent. Soc. S. Afr. 15: 6376.Google Scholar
Southwood, T. R. E. 1973. The insect/plant relationship — an evolutionary perspective. In van Emden, H. F. (Ed.), Insect/plant relationships. Symp. Roy. ent. Soc. Lond., No. 6, pp. 330.Google Scholar
Treat, A. E. 1966. A new Blattisocius (Acarina: Mesostigmata) from noctuid moths. Jl N.Y. ent. Soc. 74: 143159.Google Scholar
Treat, A. E. 1969. Behavioral aspects of the association of mites with noctuid moths. Proc. 2nd int. Congr. Acarology (Sutton Bonington, England) (1967). Akad. Kiado, Budapest. pp. 275286.Google Scholar
Wade, C. F. and Rodriguez, J. G.. 1961. Life history of Macrocheles muscaedomesticae (Acarina: Macrochelidae), a predator of the house fly. Ann. ent. Soc. Am. 54: 776781.CrossRefGoogle Scholar
Whitsel, R. H. and Schoeppner, R. F.. 1973. Mites associated with aquatic and semi-aquatic Diptera from San Mateo County, California. Proc. ent. Soc. Wash. 75: 7177.Google Scholar
Woolley, T. A. 1969. A new and phoretic oribatid mite (Acarina: Cryptostigmata: Licnodamaeidae). Proc. ent. Soc. Wash. 71: 476481.Google Scholar