Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T18:41:14.909Z Has data issue: false hasContentIssue false

DISTRIBUTION OF FEEDING DAMAGE BY PHYLLOTRETA CRUCIFERAE (GOEZE) (COLEOPTERA: CHRYSOMELIDAE) ON OILSEED RAPE AND MUSTARD SEEDLINGS IN RELATION TO CROP RESISTANCE1

Published online by Cambridge University Press:  31 May 2012

R.N. Brandt
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
R.J. Lamb
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

The distribution of feeding damage by adult Phyllotreta cruciferae (Goeze) was examined on the cotyledons, first true leaves, stems, and petioles of four crop species of Brassicaceae (Brassica juncea L. "Cutlass", B. napus L. "Westar", B. rapa L. "Tobin", and Sinapis alba L. "Ochre"). Previous studies showed that B. napus and B. rapa are susceptible, B. juncea is partially resistant, and S. alba is highly resistant to P. cruciferae. Flea beetles usually fed more on the upper surfaces, bases, and edges of cotyledons and first true leaves, but the feeding patterns were not identical on the four species. Phyllotreta cruciferae had a greater preference for the upper surface of S. alba cotyledons than for the upper surfaces of Brassica species. First true leaves of B. napus had over 90% of the feeding damage along the edge, compared with < 70% for the other species. The size of feeding pits did not differ on the upper and lower surfaces of the cotyledons and first true leaves for the Brassica species, but S. alba had smaller feeding pits on the lower surface. Sinapis alba also had the smallest feeding pits on the upper surface of its cotyledons, and S. alba and B. juncea first true leaves had feeding pits about one-half the size of the feeding pits on the other species. There was no significant difference in the amount of stem damage for the four species, but B. juncea had significantly less petiole damage than S. alba. Although there were differences in the way P. cruciferae exploited the seedling tissues of these Brassicaceae, the differences were not consistent with, or were too small to account for, the different levels of resistance of the four crops.

Résumé

Les dommages causés par l’alimentation des adultes de l’Altise des crucifères, Phyllotreta cruciferae (Goeze), ont été repérés à l’examen des cotylédons, des premières vraies feuilles, des tiges et des pétioles de quatre espèces commerciales de Brassicaceae (Brassica juncea L. "Cutlass", B. napus L. "Westar", B. rapa L. "Tobin" et Sinapis alba L. "Ochre"). Des études antérieures ont démontré que B. napus et B. rapa sont sensibles à la chrysomèle, que B. juncea est partiellement résistante et que S. alba est très résistante. Les altises se nourrissaient surtout sur la surface supérieure, à la base et sur les bordures des cotylédons et des premières vraies feuilles, mais leurs patterns d’alimentation variaient d’une espèce à l’autre. Phyllotreta cruciferae a manifesté une préférence plus marquée pour la surface supérieure des cotylédons de S. alba que pour la surface supérieure de ceux des espèces de Brassica. Sur les premières vraies feuilles de B. napus, 90% des dommages se trouvaient en bordure, alors que les dommages aux bordures étaient inférieurs à 70% chez les autres espèces. Les cavités causées par l’alimentation de la chrysomèle étaient de taille semblable sur les surfaces supérieure et inférieure des cotylédons et des premières vraies feuilles de Brassica spp., mais chez S. alba, les surfaces inférieures comportaient des cavités d’alimentation plus petites. C’est également S. alba qui comptait les plus petites cavités d’alimentation sur la surface supérieure de ses cotylédons; sur les premières feuilles de S. alba et de B. juncea, les cavités creusées n’avaient que la moitié de la taille des cavités trouvées chez les autres espèces. Les tiges étaient endommagées à peu près également chez toutes les espèces, mais les pétioles de B. juncea étaient significativement moins endommagés que ceux de S. alba. Donc, il existe des différences dans la façon dont P. cruciferae exploite les tissus des jeunes pousses de ces Brassicaceae, mais ces différences ne sont pas reliées de façon systématique à la résistance des espèces ou alors elles ne sont pas assez importantes pour expliquer la variation de la résistance.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.D., Peng, C., and Weiss, M.J.. 1992. Crambe, Crambe abyssinica Hochst., as a flea beetle resistant crop (Coleoptera: Chrysomelidae). Journal of Economic Entomology 85: 594600.CrossRefGoogle Scholar
Bodnaryk, R.P. 1991. Developmental profile of sinalbin (p-hydroxybenzyl glucosinolate) in mustard seedlings, Sinapis alba L., and its relationship to insect resistance. Journal of Chemical Ecology 17: 15431557.CrossRefGoogle ScholarPubMed
Bodnaryk, R.P. 1992 a. Distinctive leaf feeding patterns on oilseed rapes and related Brassicaceae by flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Canadian Journal of Plant Science 72: 575581.CrossRefGoogle Scholar
Bodnaryk, R.P. 1992 b. Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles, Phyllotreta cruciferae (Goeze). Canadian Journal of Plant Science 72: 12951303.Google Scholar
Bodnaryk, R.P., and Lamb, R.J.. 1991. Mechanisms of resistance to the flea beetle, Phyllotreta cruciferae (Goeze) in yellow mustard seedlings, Sinapis alba L. Canadian Journal of Plant Science 71: 1320.CrossRefGoogle Scholar
Bodnaryk, R.P., and Palaniswamy, P.. 1990. Glucosinolate levels in cotyledons of mustard, Brassica juncea L. and rape, B. napus L. do not determine feeding rates of flea beetle, Phyllotreta cruciferae (Goeze). Journal of Chemical Ecology 16: 27352746.CrossRefGoogle Scholar
Brandt, R.N., and Lamb, R.J.. 1994. Importance of tolerance and growth rate in the resistance of oilseed rapes and mustards to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Canadian Journal of Plant Science. In press.CrossRefGoogle Scholar
Brett, C.H., and Rudder, J.D.. 1966. Resistance of 30 commercial varieties to the striped flea beetle, Phyllotreta striolata. Journal of Economic Entomology 59: 769.Google Scholar
Burgess, L., and Wiens, J.E.. 1980. Dispensing allylisothiocyanate as an attractant for trapping crucifer-feeding flea beetles. The Canadian Entomologist 112: 9397.CrossRefGoogle Scholar
Butts, R.A., and Lamb, R.J.. 1990. Injury to oilseed rape caused by mirid bugs (Lygus) (Heteroptera: Miridae) and its effect on seed production. Annals of Applied Biology 117: 253266.Google Scholar
Hoxie, R.P., Wellso, S.G., and Webster, J.A.. 1975. Cereal leaf beetle response to wheat trichome length and density. Environmental Entomology 4: 365370.CrossRefGoogle Scholar
Keiller, D.R., and Morgan, D.G.. 1988. Effect of pod removal and plant growth regulators on the growth, development and carbon assimilate distribution in oilseed rape (Brassica napus L.). Journal of Agricultural Science 111: 357362.Google Scholar
Lamb, R.J. 1980. Hairs protect pods of mustard (Brassica hirta ‘Gisilba’) from flea beetle feeding damage. Canadian Journal of Plant Science 60: 14391440.Google Scholar
Lamb, R.J. 1984. Effects of flea beetles, Phyllotreta spp. (Chrysomelidae: Coleoptera), on the survival, growth, seed yield and quality of canola, rape and yellow mustard. The Canadian Entomologist 116: 269280.CrossRefGoogle Scholar
Lamb, R.J. 1988 a. Assessing the susceptibility of crucifer seedlings to flea beetle (Phyllotreta spp.) damage. Canadian Journal of Plant Science 68: 8593.CrossRefGoogle Scholar
Lamb, R.J. 1988 b. Susceptibility of low-and high-glucosinolate oilseed rapes to damage by flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae). The Canadian Entomologist 120: 195196.CrossRefGoogle Scholar
Lamb, R.J. 1989. Entomology of oilseed Brassica crops. Annual Review of Entomology 116: 268280.Google Scholar
Lamb, R.J., and Palaniswamy, P.. 1990. Host discrimination by a crucifer-feeding flea beetle, Phyllotreta striolata (F.), (Coleoptera: Chrysomelidae). The Canadian Entomologist 122: 817824.CrossRefGoogle Scholar
Lyman, J.M., and Cardona, C.. 1982. Resistance in lima beans to a leafhopper, Empoasca kraemeri. Journal of Economic Entomology 75: 281286.CrossRefGoogle Scholar
Palaniswamy, P., and Lamb, R.J.. 1992. Host preferences of the flea beetles Phyllotreta cruciferae and P. striolata (Coleoptera: Chrysomelidae) for crucifer seedlings. Journal of Economic Entomology 85: 743752.CrossRefGoogle Scholar
Putnam, L.G. 1977. Response of four Brassica seed crop species to attack by the crucifer flea beetle, Phyllotreta cruciferae. Canadian Journal of Plant Science 57: 987989.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry. Freeman, San Francisco, CA. 859 pp.Google Scholar
SAS Institute Inc. 1990. SAS/STAT User's Guide, Version 6 Edition. SAS Institute Inc., Cary, NC. 1686 pp.Google Scholar
Stoner, K.A. 1990. Glossy leaf wax and plant resistance to insects in Brassica oleracea under natural infestation. Environmental Entomology 19: 730739.Google Scholar
Stork, N.E. 1980. Role of waxblooms in preventing attachment to Brassicas by the mustard beetle, Phaedon cochleariae. Entomologia Experimentalis et Applicata 28: 100107.CrossRefGoogle Scholar
Tahvanainen, J.O. 1972. Phenology and microhabitat selection of some flea beetles (Coleoptera: Chrysomelidae) on wild and cultivated crucifers in central New York. Entomologica Scandinavica 3: 120138.CrossRefGoogle Scholar
Tatchell, G.M. 1983. Compensation in spring-sown oil-seed rape (Brassica napus L.) plants in response to injury to their flower buds and pods. Journal of Agricultural Science 101: 565573.CrossRefGoogle Scholar
Williams, I.H., and Free, J.B.. 1979. Compensation of oil-seed rape (Brassica napus L.) plants after damage to their buds and pods. Journal of Agricultural Science 92: 53–39.CrossRefGoogle Scholar
Willmer, P. 1986. Microclimatic effects of insects at the plant surface. pp. 65–90 in Juniper, B., and Southwood, R. (Eds.), Insects and the Plant Surface. Edward Arnold (Publishers) Limited, London, England. 360 pp.Google Scholar