Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T13:04:29.106Z Has data issue: false hasContentIssue false

MUTATIONS IN DROSOPHILA MELANOGASTER AFFECTING PHYSIOLOGICAL AND BEHAVIOURAL RESPONSE TO MALATHION

Published online by Cambridge University Press:  31 May 2012

Fred G. Pluthero
Affiliation:
Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1
Stephen F. H. Threlkeld
Affiliation:
Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1

Abstract

Mutants of Drosophila melanogaster (Meigen) with altered resistance to the insecticide malathion were isolated and tested for their avoidance response to the insecticide. A correlation between sensitivity to the insecticide and increased avoidance was detected. Approximate chromosome map locations were determined for the loci of the mutations.

Résumé

Certains mutants de Drosophila melanogaster (Meigen) caractérisés par leur résistance modifiée au malathion ont été isolés et testés pour leur réponse d'aversion vis-à-vis l'insecticide. Une corrélation a été observée entre la sensibilité à l'insecticide et une augmentation de l'aversion. On a pu déterminer les sites approximatifs des loci des mutations sur la carte chromosomique.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beyer, W. H. 1966. Handbook of Probability and Statistics. Chemical Rubber Co., Cleveland, Ohio.Google Scholar
Fay, R. W., Kilpatrick, J. W., and Morris, G. C.. 1958. Malathion resistance studies in the housefly. J. econ. Ent. 51: 452453.Google Scholar
Fuyama, Y. 1976. Behavior Genetics of olfactory responses in Drosophila. I. Olfactometry and strain differences in D. melanogaster. Beh. Gen. 6: 407420.CrossRefGoogle Scholar
Hall, J. C. 1978. Courtship among males due to a male-sterile mutation in Drosophila melanogaster. Beh. Gen. 8: 125141.CrossRefGoogle ScholarPubMed
Hall, J. C. and Greenspan, R. J.. 1979. Genetic Analysis of Drosophila Neurobiology. A. Rev. Gen. 13: 127195.CrossRefGoogle ScholarPubMed
Homyk, T. and Sheppard, D. E.. 1977. Behavioral mutants of Drosophila melanogaster I. Isolation and mapping of mutations which decrease flight ability. Genetics 87: 95104.CrossRefGoogle ScholarPubMed
Homyk, T., Szidonya, J., and Suzuki, D. T.. 1980. Behavioural mutants of D. melanogaster Ill. Isolation and mapping of mutations by direct visual observations of behavioural phenotypes. Molec. Gen. Genet. 177: 553565.CrossRefGoogle Scholar
Hooper, G. A. S. and Brown, A. W. A.. 1965. Development of increased irritability to insecticides due to decreased detoxication. Entomologia exp. appl. 8: 263270.Google Scholar
Hoskins, W. M. 1960. Use of the dosage-mortality curve in quantitative estimation of insecticide resistance. Misc. Publ. ent. Soc. Am. 2: 8591.Google Scholar
Kilpatrick, J. W. and Schoof, H. F.. 1958. A field strain of malathion resistant houseflies. J. econ. Ent. 51: 1819.Google Scholar
Lewis, E. B. and Bacher, F.. 1968. EMS mutagenization of Drosophila. Dros. Inf. Serv. 43: 193.Google Scholar
Lindsley, D. L. and Grell, E. H.. 1968. Genetic variations of D. melanogaster. Carnegie Inst. Wash. Publ. 627.Google Scholar
Pak, W. L., Grossfield, J., and Arnold, K.. 1970. Mutants of the visual pathway of Drosophila melanogaster. Nature (Lond.) 227: 518520.CrossRefGoogle ScholarPubMed
Pak, W. L. and Pinto, L. N.. 1976. Genetic approach to the study of the nervous system. A. Rev. Biophys. Bioeng. 5: 397448.CrossRefGoogle Scholar
Pluthero, F. G. and Singh, R. S.. 1984. Insect behavioural responses to toxins: practical and evolutionary considerations. Can. Ent. 116: 5768.Google Scholar
Pluthero, F. G., Singh, R. S., and Threlkeld, S. F. H.. 1982. The behavioural and physiological components of malathion resistance in Drosophila melanogaster. Can. J. Gen. Cytol. 24: 807815.CrossRefGoogle Scholar
Pluthero, F. G. and Threlkeld, S. F. H.. 1980. Vacuum injection measurements of susceptibility to insecticides. J. econ. Ent. 73: 424426.CrossRefGoogle Scholar
Pluthero, F. G. and Threlkeld, S. F. H.. 1981. Genetic differences in Malathion avoidance in D. melanogaster. J. econ. Ent. 74: 736740.CrossRefGoogle Scholar
Quinn, W. G., Harris, W. D., and Benzer, S.. 1974. Conditioned behaviour in D. melanogaster. PNAS 71: 708712.Google Scholar
Quinn, W. G., Sziber, P. P., and Booker, R.. 1979. The Drosophila memory mutant amnesiac. Nature 277: 21122114.CrossRefGoogle ScholarPubMed
Schmidt, C. H. and La Brecque, G. L.. 1959. Acceptability and toxicity of poisoned baits to houseflies resistant to organophosphorous insecticides. J. econ. Ent. 52: 345346.CrossRefGoogle Scholar
Shreck, C. E. 1977. Techniques for the evaluation of insect repellents: a critical review. A. Rev. Ent. 22: 101119.CrossRefGoogle Scholar
Silverman, P. H. and Mer, M. D.. 1952. Behaviour of a DDT-resistant strain of flies. Riv. Parassit. 13: 123128.Google Scholar
Sokal, R. R. and Rohlf, F. J.. 1969. Biometry. W. H. Freeman, San Francisco.Google Scholar
WHO. 1970. Tech. Rep. Wld Hlth Org. 443, pp. 35–36, pp. 158163.Google Scholar