Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T13:00:35.720Z Has data issue: false hasContentIssue false

Sap beetles (Coleoptera: Nitidulidae) in managed and old-growth forests in southeastern Ontario, Canada

Published online by Cambridge University Press:  02 April 2012

Rebecca M. Zeran
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Robert S. Anderson
Affiliation:
Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada K1P 6P4
Terry A. Wheeler*
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
*
1 Corresponding author (e-mail: wheeler@nrs.mcgill.ca).

Abstract

Nitidulid beetles were sampled from old-growth and mature managed hemlock-hardwood forest stands in southeastern Ontario, Canada. Large-area flight-intercept traps and trunk-window traps were operated for 22 weeks in 2003 and yielded 2129 nitidulid beetles representing 30 species. Species richness was similar in both forest types but relative abundance was higher in managed stands. Other diversity measures (rarefaction-estimated species richness, Fisher's α, Simpson's index) were all higher in old-growth stands, and managed stands were separated from old-growth stands in cluster analyses based on overall species diversity. These results were strongly influenced by the dominance of Glischrochilus quadrisignatus (Say) in two managed stands; removal of that species from analyses resulted in higher species diversity in managed stands and no distinct separation of forest types in cluster analyses. Indicator species analysis showed that G. quadrisignatus and Pallodes pallidus (Palisot de Beauvois) were strongly associated with managed stands. Glischrochilus sanguinolentus (Olivier) was collected more frequently in trunk-window traps than in flight-intercept traps and data suggested a possible association of this beetle with old-growth stands. Pallodes pallidus and Cychramus adustus Erichson, both known to feed on fleshy white fungi, displayed a clear division in seasonal abundance peaks, suggesting that resource partitioning may be occurring.

Résumé

Nous avons échantillonné les coléoptères nitudilidés dans des sites forestiers de bois durs et de pruches, les uns naturels et anciens, les autres aménagés et matures, dans le sud-est de l'Ontario, Canada. Nous avons installé des pièges d'interception de vol de grande surface et des pièges fenêtres sur tronc pendant 22 semaines en 2003 qui ont récolté 2129 coléoptères nitudilidés représentant 30 espèces. La richesse spécifique est semblable dans les deux types de forêt, mais l'abondance relative est plus élevée dans les sites aménagés. Les autres mesures de la diversité (richesse spécifique estimée par raréfaction, α de Fisher, indice de Simpson) sont toutes plus grandes dans les sites anciens; les sites aménagés se séparent d'ailleurs tous des sites anciens dans les analyses de regroupement basées sur la diversité spécifique globale. Ces résultats sont fortement influencés par la dominance de Glischrochilus quadrisignatus (Say) dans deux des sites aménagés; le retrait de cette espèce des analyses donne une diversité spécifique plus élevée dans les sites aménagés et il supprime la séparation des types forestiers dans les analyses de groupement. Une analyse des espèces indicatrices montre que G. quadrisignatus et Pallodes pallidus (Palisot de Beauvois) sont fortement associés aux sites aménagés. Glischrochilus sanguinolentus (Olivier) se récolte plus fréquemment dans les pièges fenêtres sur tronc que dans les pièges à interception et les données indiquent une association possible de ce coléoptère avec les forêts anciennes. Pallodes pallidus et Cychramus adustus Erichson, qui sont tous deux connus pour se nourrir de champignons charnus blancs, possèdent des pics d'abondance saisonnière nettement distincts, ce qui laisse croire qu'il y a peut-être là une partition des ressources.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.S. 1982. Resource partitioning in the carrion beetle (Coleoptera: Silphidae) fauna of southern Ontario: Ecological and evolutionary considerations. Canadian Journal of Zoology, 60: 13141325.CrossRefGoogle Scholar
Berg, Å., Ehnström, B., Gustafsson, L., Hallingbäck, T., Jonsell, M., and Weslien, J. 1994. Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat associations. Conservation Biology, 8: 718731.CrossRefGoogle Scholar
Blackmer, J.L., and Phelan, P.L. 1995. Ecological analyses of Nitidulidae: seasonal occurrence, host choice and habitat preference. Journal of Applied Entomology, 119: 321329.CrossRefGoogle Scholar
Buddle, C.M., Spence, J.R., and Langor, D.W. 2000. Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography, 23: 424436.CrossRefGoogle Scholar
Cease, K.R., and Juzwik, J. 2001. Predominant nitidulid species (Coleoptera: Nitidulidae) associated with spring oak wilt mats in Minnesota. Canadian Journal of Forest Research, 31: 635643.CrossRefGoogle Scholar
Chandler, D.S. 1991. Comparison of some slimemold and fungus feeding beetles (Coleoptera: Eucinetoidea, Cucujoidea) in an old-growth and 40-year-old forest in New Hampshire. The Coleopterist's Bulletin, 45: 239256.Google Scholar
Chandler, D.S., and Peck, S.B. 1992. Diversity and seasonality of leiodid beetles (Coleoptera: Leiodidae) in an old-growth and a 40-year-old forest in New Hampshire. Environmental Entomology, 21: 12831293.CrossRefGoogle Scholar
Colwell, R.K. 2001. EstimateS: statistical estimation of species richness and shared species from samples. Version 6.0b1. User's guide and application available from http://viceroy.eeb.uconn.edu/estimates.Google Scholar
Crowson, R.A. 1984. The associations of Coleoptera with ascomycetes. In Fungus–insect relationships. Edited by Wheeler, Q. and Blackwell, M.. Columbia University Press, New York. pp. 256285.Google Scholar
Dowd, P.F., and Nelsen, T.C. 1994. Seasonal variation of sap beetle (Coleoptera: Nitidulidae) populations in central Illinois cornfield–oak woodland habitat and potential influence of weather patterns. Environmental Entomology, 23: 12151223.CrossRefGoogle Scholar
Downie, N.M., and Arnett, R.H. 1996. The beetles of northeastern North America. Vols. I and II. The Sandhill Crane Press, Gainesville, Florida.Google Scholar
Dufrêne, M., and Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345366.Google Scholar
Gotelli, N.J., and Entsminger, G.L. 2001. EcoSim: null models software for ecology. Version 7.0 [computer program]. Acquired Intelligence Inc. and Kesey-Bear, Jericho, Vermont. Available from http://homepages.together.net/~gentsmin/ecosim.htm.Google Scholar
Grove, S.J. 2002. Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics, 33: 123.CrossRefGoogle Scholar
Habeck, D.H. 2002 a. Nitidulidae Latreille 1802. In American beetles. Vol. 2. Polyphaga: Scarabaeoidea through Curculionoidea. Edited by Arnett, R.H. Jr., Thomas, M.C., Skelley, P.E., and Frank, J.H.. CRC Press, Boca Raton, Florida. pp. 311315.Google Scholar
Habeck, D.H. 2002 b. Brachypteridae Erichson 1845. In American beetles. Vol. 2. Polyphaga: Scarabaeoidea through Curculionoidea. Edited by Arnett, R.H. Jr., Thomas, M.C., Skelley, P.E., and Frank, J.H.. CRC Press, Boca Raton, Florida. pp. 309310.Google Scholar
Hammond, H.E.J. 1997. Arthropod biodiversity from Populus coarse woody material in north-central Alberta: a review of taxa and collection methods. The Canadian Entomologist, 129: 10091033.CrossRefGoogle Scholar
Hammond, H.E.J., Langor, D.W., and Spence, J.R. 2001. Early colonization of Populus wood by saproxylic beetles (Coleoptera). Canadian Journal of Forest Research, 31: 11751183.CrossRefGoogle Scholar
Hammond, H.E.J., Langor, D.W., and Spence, J.R. 2004. Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: spatiotemporal variation and conservation of assemblages. Canadian Journal of Forest Research, 34: 119.CrossRefGoogle Scholar
Kaila, L. 1993. A new method for collecting quantitative samples of insects associated with decaying wood or wood fungi. Entomologica Fennica, 4: 2123.CrossRefGoogle Scholar
Kaila, L., Martikainen, P., Punttila, P., and Yakovlev, E. 1994. Saproxylic beetles (Coleoptera) on dead birch trunks decayed by different polypore species. Annales Zoologici Fennici, 31: 97107.Google Scholar
Keeney, G., Ellis, M.S., Richmond, D., and Williams, R.N. 1994. A preliminary study of the Nitidulidae (Coleoptera) in Shawnee State Forest, Ohio. Entomological News, 105: 149158.Google Scholar
Komonen, A. 2003. Hotspots of insect diversity in boreal forests. Conservation Biology, 17: 976981.CrossRefGoogle Scholar
Lawrence, J.F. 1989. Mycophagy in the Coleoptera: feeding strategies and morphological adaptations. In Insect–Fungus Interactions. Proceedings of the 14th Symposium of the Royal Entomological Society of London in Collaboration with the British Mycological Society. Edited by Wilding, N., Collins, N.M., Hammond, P.M., and Webber, J.F.. Academic Press, London. pp. 127.Google Scholar
Leschen, R.A. 1988. Pallodes austrinus, a new species of Nitidulidae (Nitidulinae) with discussions on Pallodes mycophagy. Journal of the New York Entomological Society, 96: 452458.Google Scholar
Luckman, W.H. 1963. Observations on biology and control of Glischrochilus quadrisignatus. Journal of Economic Entomology, 56: 681686.CrossRefGoogle Scholar
Magurran, A. 2004. Measuring biological diversity. Blackwell Publishing, Malden, Massachusetts.Google Scholar
Martikainen, P., Siitonen, J., Punttila, P., Kaila, L., and Rauh, J. 2000. Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biological Conservation, 94: 199209.CrossRefGoogle Scholar
Matthewman, W.G., and Pielou, D.P. 1971. Arthropods inhabiting the sporophores of Fomes fomentarius (Polyporaceae) in Gatineau Park, Quebec. The Canadian Entomologist, 103: 775847.CrossRefGoogle Scholar
McCune, B., and Mefford, M.J. 1999. PC-ORD. Multivariate analysis of ecological data, version 4. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
McCune, B., Grace, J.B., and Urban, D.L. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
Niemelä, J. 1997. Invertebrates and boreal forest management. Conservation Biology, 11: 601610.CrossRefGoogle Scholar
Økland, B., Bakke, A., Hågvar, S., and Kvamme, T. 1996. What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodiversity and Conservation, 5: 75100.CrossRefGoogle Scholar
Olszewski, T.D. 2004. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos, 104: 377387.CrossRefGoogle Scholar
Peck, S.B., and Anderson, R.S. 1985. Seasonal activity and habitat associations of adult small carrion beetles in southern Ontario (Coleoptera: Leiodidae: Cholevinae). The Coleopterist's Bulletin, 39: 347353.Google Scholar
Peck, S.B., and Davies, A.E. 1980. Collecting small beetles with large-area “window” traps. The Coleopterist's Bulletin, 34: 237239.Google Scholar
Rowe, J.S. 1972. Forest regions of Canada. Publication No. 1300. Department of Fisheries and the Environment, Canadian Forestry Service, Ottawa, Ontario.Google Scholar
Schiegg, K. 2000. Are there saproxylic beetles species characteristic of high dead wood connectivity? Ecography, 23: 579587.CrossRefGoogle Scholar
Siitonen, J., and Martikainen, P. 1994. Occurrence of rare and threatened insects living on decaying Populus tremula: a comparison between Finnish and Russian Karelia. Scandinavian Journal of Forest Research, 9: 185191.CrossRefGoogle Scholar
Similä, M., Kouki, J., and Martikainen, P. 2003. Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. Forest Ecology and Management, 174: 365381.CrossRefGoogle Scholar
Stabb, M. 1996. Ontario's old growth: a learner's handbook. Canadian Nature Federation, Ottawa, Ontario.Google Scholar
Suffling, R., Evans, E., and Perara, A. 2003. Presettlement forest in southern Ontario: ecosystems measured through a cultural prism. The Forestry Chronicle, 79: 485501.CrossRefGoogle Scholar
Sverdrup-Thygeson, A. 2001. Can ‘continuity indicator species’ predict species richness or red-listed species of saproxylic beetles? Biodiversity and Conservation, 10: 815832.CrossRefGoogle Scholar
Väisänen, R., Biström, O., and Heliövaara, K. 1993. Sub-cortical Coleoptera in dead pines and spruces: is primeval species composition maintained in managed forests? Biodiversity and Conservation, 2: 95113.CrossRefGoogle Scholar
Werner, S.M., and Raffa, K.F. 2000. Effects of forest management practices on the diversity of ground-occurring beetles in mixed northern hardwood forests of the Great Lakes Region. Forest Ecology and Management, 139: 135155.CrossRefGoogle Scholar
Wolda, H. 1981. Similarity indices, sample size and diversity. Oecologia, 50: 296301.CrossRefGoogle ScholarPubMed