Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T18:54:23.105Z Has data issue: false hasContentIssue false

Small-scale heterogeneity in temperate forest canopy arthropods: stratification of spider and beetle assemblages

Published online by Cambridge University Press:  04 July 2012

Kathleen R. Aikens
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, Canada H9X 3V9
Christopher M. Buddle*
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, Canada H9X 3V9
*
1Corresponding author (e-mail: chris.buddle@mcgill.ca).

Abstract

Vertical gradients in biotic and abiotic factors may create small-scale spatial variation in arthropod communities, a phenomenon that continues to be understudied. We investigated heterogeneity in the vertical distribution of spider and beetle assemblages in the canopy of sugar maples (Acer saccharum Marshall) (Aceraceae) in a deciduous forest in eastern Canada. Comparisons across four strata (understorey [UN] through upper canopy [UC] crown) documented variation in density, diversity, and species composition. Density of all common families decreased significantly with height and overall species richness of both spiders and beetles was highest in the UN and lowest in the UC crown. We observed greater spatial variation in spider assemblages compared with beetle assemblages and documented differences in spider guild structure: web-spinning spiders were most common in the UN and jumping spiders dominated the canopy. Our results suggest that arthropod assemblages are not homogeneous with respect to vertical space and that heterogeneity exists even at the scale of several metres.

Résumé

Les gradients verticaux des facteurs biotiques et abiotiques peuvent produire des variations spatiales à petite échelle dans les communautés d'arthropodes, un phénomène qui reste encore peu étudié. Nous examinons l'hétérogénéité de la répartition spatiale de peuplements d'araignées et de coléoptères dans la canopée d’érables à sucre (Acer saccharum Marshall) (Aceraceae) dans une forêt décidue de l'est du Canada. La comparaison de quatre strates (du sous-bois à la cime supérieure de la canopée) montre des variations de densité, de diversité et de composition d'espèces. La densité de toutes les familles communes décroît significativement en fonction de la hauteur et la richesse spécifique globale, tant des araignées que des coléoptères, atteint son maximum dans le sous-bois et son minimum dans la cime supérieure de la canopée. Nous observons une variation spatiale plus importante chez les peuplements d'araignées que chez les peuplements de coléoptères, ainsi que des différences dans les guildes d'araignées, car les araignées tisseuses de toile sont plus communes dans le sous-bois et les araignées sauteuses dominent dans la canopée. Nos résultats indiquent que les peuplements d'arthropodes ne sont pas homogènes en fonction de l'espace vertical et qu'il existe une hétérogénéité même à l’échelle de quelques mètres.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikens, K.R. 2008. Heterogeneity in a temperate forest canopy: describing patterns of distribution and depredation of arthropod assemblages. MSc. thesis. McGill University, Montréal, Québec, Canada.Google Scholar
Arnett, R.H.Thomas, M.C. 2001. American beetles, Vol. 1. CRC Press, Boca Raton, Florida, United States of America.Google Scholar
Arnett, R.H., Thomas, M.C., Skelley, P.E., Frank, J.H. 2002. American beetles, Vol. 2. CRC Press, Boca Raton, Florida, United States of America.Google Scholar
August, P.V. 1983. The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology, 64: 14951507.Google Scholar
Basset, Y., Aberlenc, H.-P., Barrios, H., Curletti, G., Bérenger, J.-M., Vesco, J.-P., et al. 2001. Stratification and diel activity of arthropods in a lowland rainforest in Gabon. Biological Journal of the Linnean Society, 72: 585607.CrossRefGoogle Scholar
Beaulieu, F., Walter, D., Proctor, H.C., Kitching, R.L. 2010. The canopy starts at 0.5 metres: predatory mites (Acari: Mesostigmata) differ between rainforest floor soil and suspended soil at any height. Biotropica, 42: 704709.CrossRefGoogle Scholar
Bruhl, C.A., Gunsalam, G., Lisenmair, E. 1998. Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. Journal of Tropical Ecology, 14: 285297.Google Scholar
Canham, C.D., Finzi, A.C., Pacala, S.W., Burbank, D.H. 1994. Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Canadian Journal of Forestry Research, 24: 337349.CrossRefGoogle Scholar
Chao, A., Chazdon, R.L., Colwell, R.K., Shen, T.-J. 2005. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecology Letters, 8: 148159.Google Scholar
Charles, E.Basset, Y. 2005. Vertical stratification of leaf-beetle assemblages (Coleoptera: Chrysomelidae) in two forest types in Panama. Journal of Tropical Ecology, 21: 329336.Google Scholar
Chazdon, R.L., Colwell, R.K., Denslow, J.S., Guariguata, M.R. 1998. Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In Forest biodiversity research, monitoring and modeling: conceptual background and Old World case studies. Edited by F. Dallmeier and J.A. Comiskey. Parthenon Publishing, Paris. pp. 285309.Google Scholar
Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18: 117143.Google Scholar
Colwell, R.K. 2006. EstimateS: statistical estimation of specie richness and shared species from samples, version 8.0. User's guide and application published [online]. Available from http://viceroy.eeb.uconn.edu/estimates [accessed 20 December 2011].Google Scholar
DeVries, P.J., Murray, D., Lande, R. 1997. Species diversity in vertical, horizontal, and temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian rainforest. Biological Journal of the Linnean Society, 62: 343364.CrossRefGoogle Scholar
Dondale, C.D.Redner, J.H. 1982. The sac spiders of Canada and Alaska, Araneae: Clubionidae and Anyphaenidae. Biosystematics Research Institute, Ottawa, Ontario, Canada.Google Scholar
Downie, N.M.Arnett, R.H. 1996. The beetles of northeastern North America. Sandhill Crane Press, Gainesville, Florida.Google Scholar
Ehmann, W.J. 1994. Organization of spider assemblages on shrubs: an assessment of the role of dispersal mode in colonization. American Midland Naturalist, 131: 301310.Google Scholar
Ellsworth, D.S.Reich, P.B. 1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia, 96: 169178.CrossRefGoogle Scholar
Erwin, T.L. 1982. Tropical forests, their richness in Coleoptera and other arthropod species. The Coleopterists Bulletin, 36: 7475.Google Scholar
Fortin, M.Maufette, Y. 2002. The suitability of leaves from different canopy layers for a generalist herbivore (Lepidoptera: Lasiocampidae) foraging on sugar maple. Canadian Journal of Forestry Research, 32: 379389.Google Scholar
Freeman, J.A. 1946. The distribution of spiders and mites up to 300 ft in the air. The Journal of Animal Ecology, 15: 6974.CrossRefGoogle Scholar
Gotelli, N.J.Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4: 379391.CrossRefGoogle Scholar
Gotelli, N.J.Entsminger, G.L. 2004. EcoSim: null models software for ecology, version 7 [online]. Acquired Intelligence Inc. and Kesey-Bear, Jericho, Vermont, United States of America. Available from http://garyentsminger.com/ecosim/index.htm [accessed 20 December 2011].Google Scholar
Grimbacher, P.S.Stork, N.E. 2007. Vertical stratification of feeding guilds and body size in beetle assemblages from an Australian tropical rainforest. Austral Ecology, 32: 7785.Google Scholar
Gunnarsson, B. 1996. Bird predation and vegetation structure affecting spruce-living arthropods in temperate forest. Journal of Animal Ecology, 65: 389397.Google Scholar
Halaj, J., Ross, D.W., Moldenke, A.R. 1998. Habitat structure and prey availability as predictors of the abundance and community organization of spiders in western Oregon forest canopies. Journal of Arachnology, 26: 203220.Google Scholar
Holmes, R.T., Schutlz, J.C., Nothnagle, P. 1979. Bird predation on forest insects: an exclosure experiment. Science, 206: 462463.CrossRefGoogle ScholarPubMed
Klimaszewski, J.Majka, C.G. 2007. Euvira micmac a new species (Coleoptera: Staphylinidae: Aleocharinae), and first record of the genus in Canada. The Canadian Entomologist, 139: 147153.Google Scholar
Larrivée, M.Buddle, C.M. 2009. Diversity of canopy and understorey spiders in north-temperate hardwood forests. Agricultural and Forest Entomology, 11: 225237.CrossRefGoogle Scholar
Le Corff, J.L.Marquis, R.J. 1999. Differences between understorey and canopy in herbivore community composition and leaf quality for two oak species in Missouri. Ecological Entomology, 24: 4658.CrossRefGoogle Scholar
Lindo, Z.Winchester, N.N. 2006. A comparison of microarthropod assemblages with emphasis on oribatid mites in canopy suspended soils and forest floors associated with ancient western red cedar trees. Pedobiologia, 50: 3141.Google Scholar
Longino, J.Nadkarni, N.M. 1990. A comparison of ground and canopy leaf litter ants (Hymenoptera: Formicidae) in a Neotropical montane forest. Psyche, 97: 8194.CrossRefGoogle Scholar
MacArthur, R.H.MacArthur, J.W. 1961. On bird species diversity. Ecology, 42: 594598.Google Scholar
Marquis, R.J.Whelan, C.J. 1994. Insectivorous birds increase growth of white oak through consumption of leaf-chewing insects. Ecology, 75: 20072014.CrossRefGoogle Scholar
McCune, B.Grace, J.B. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon, United States of America.Google Scholar
Molleman, F., Kop, A., Brakefield, P.M., De Vries, P.J., Zwaan, B.J. 2006. Vertical and temporal patterns of biodiversity of fruit-feeding butterflies in a tropical forest in Uganda. Biodiversity and Conservation, 15: 107121.Google Scholar
Nadkarni, N.M., Parker, G.G., Rinker, B., Jarzen, D.M. 2004. The nature of forest canopies. In Forest canopies, 2nd ed.Edited by M.D. Lowman and H.B. Rinker. Elsevier Academic Press, Burlington, Vermont, United States of America. pp. 323.Google Scholar
Oishi, M., Yokota, T., Teramoto, N., Sato, H. 2006. Japanese oak silkmoth feeding preference for and performance on upper-crown and lower-crown leaves. Entomological Science, 9: 161169.Google Scholar
Paquin, P.Dupérré, N. 2003. Guide d'indentification des Araignées (Araneae) du Québec. Fabreries, Supplément, 11: 1251.Google Scholar
Parker, G.G. 1995. Structure and microclimate of forest canopies. In Forest canopies: a review of research on a biological frontier. Edited by M. Lowman and N. Nadkarni. Academic Press, San Diego, California, United States of America. pp. 73106.Google Scholar
Philpott, S.M., Greenberg, R., Bichier, P., Perfecto, I. 2004. Impacts of major predators on tropical agroforest arthropods: comparisons within and across taxa. Oecologia, 140: 140149.Google Scholar
Preisser, E., Smith, D.C., Lowman, M.D. 1999. Canopy and ground level insect distribution in a temperate forest. Selbyana, 19: 141146.Google Scholar
Proctor, H.C., Montgomery, K.M., Rosen, K.E., Kitching, R.L. 2002. Are tree trunks habitats or highways? A comparison of oribatid mite assemblages from hoop-pine bark and litter. Australian Journal of Entomology, 41: 294299.Google Scholar
Rodgers, D.J.Kitching, R.L. 1998. Vertical stratification of rainforest collembolan (Collembola: Insecta) assemblages: description of ecological patterns and hypotheses concerning their generation. Ecography, 21: 392400.Google Scholar
Root, R.B. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs, 37: 317350.Google Scholar
Schroeder, B., Buddle, C.M., Saint-Germain, M. 2009. Activity of flying beetles (Coleoptera) at two heights in canopy gaps and intact forests in a hardwood forest in Quebec. The Canadian Entomologist, 141: 515620.Google Scholar
Su, J.C.Woods, S.A. 2001. Importance of sampling along a vertical gradient to compare the insect fauna in managed forests. Environmental Entomology, 30: 400408.Google Scholar
Ulyshen, M.D.Hanula, J.L. 2007. A comparison of the beetles (Coleoptera) fauna captured at two heights above the ground in a North American temperate deciduous forest. American Midland Naturalist, 158: 260278.Google Scholar
Van Bael, S.A., Brawn, J.D., Robinson, S.K. 2003. Birds defend trees from herbivores in a Neotropical forest canopy. Proceedings of the National Academy of Sciences, 100: 83048307.Google Scholar
Vance, C.C., Smith, S.M., Malcolm, J.R., Bellocq, M.I. 2007. Differences between forest type and vertical strata in the diversity and composition of hymenopteran families and mymarid genera in northeastern temperate forests. Environmental Entomology, 36: 10731083.Google Scholar
Winchester, N.N., Behan-Pelletier, V.M., Ring, R.A. 1999. Arboreal specificity, diversity and abundance of canopy-dwelling oribatid mites (Acari: Oribatida). Pedobiologia, 43: 391400.Google Scholar
Wise, D. 1993. Spiders in ecological webs. Cambridge University Press, Cambridge, United Kingdom.Google Scholar