Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T14:32:04.130Z Has data issue: false hasContentIssue false

SPATIAL–TEMPORAL VARIABILITY AND THE STUDY OF AQUATIC INSECTS1, 2

Published online by Cambridge University Press:  31 May 2012

Vincent H. Resh
Affiliation:
Department of Entomological Sciences, University of California, Berkeley, California, USA94720
David M. Rosenberg
Affiliation:
Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6

Abstract

Spatial and temporal variability are essential considerations in the study of aquatic insects. Traditionally, these two sources of variability are treated separately; however, they should be considered together because they occur concurrently in natural systems. To illustrate this interaction, we constructed two-way variability tables in which spatial (habitat, reach or zone, system, intersystem) and temporal (within a day, within a season, within a year, year to year) scales were ordered on separate axes, and examples of concurrent spatial and temporal variability were entered at the intersects of the scales. We examined three aspects of aquatic insect life histories in lotic and lentic waters using such tables: emergence, feeding and growth, and movements and migrations. It proved easier to find examples for the stream tables than for the lake tables, perhaps because of greater spatial and temporal variability in lotic than lentic waters. Also, more papers have been published on stream than on lake insects over the last decade or so. Spatial and temporal scales at which lotic and lentic research is done were determined by examining the recent contents of five key aquatic journals (≈ 500 articles). Research on aquatic insects appears generally to be done at relatively long temporal scales, but at smaller spatial and shorter temporal scales in lotic than lentic systems. Perusal of the literature to find examples of concurrent spatial and temporal variability revealed the prevalence of a “mean-values” appproach to data analysis, in which investigators “homogenize” data to reduce spatial and temporal variability. However, it is this spatial and temporal variability that often provides an explanation of factors causing the patterns observed. A “variance” approach, in which data are disaggregated and fluctuations or extremes are considered, may be far more informative and may elucidate underlying mechanisms.

Résumé

La variabilité spatiale et temporelle sont des aspects essentiels de l’étude des insectes aquatiques. Habituellement ils sont traités séparément bien qu’ils coincident dans les habitats naturels. Afin d’illustrer leur interaction, on a construit des tableaux de variabilité à deux dimensions dont les échelles spatiale (habitat, zone, système ou inter-système) et temporelle (journalière, saisonnière, annuelle et inter-annuelle) sont représentées sur des axes différents, et des cas de variabilité spatiale et temporelle coïncidente y ont été placés à l’intersection des échelles. On a ensuite étudié trois aspects des cycles vitaux d’insectes des milieux lentique et lotique à l’aide de ces tableaux : l’émergence, l’alimentation et la croissance, et les déplacements et migrations. Il s’est avéré plus facile de trouver des exemples pour les cours d’eau que les lacs, possiblement à cause de la plus grande variabilité spatiale et temporelle des eaux lotiques que lentiques. Par ailleurs, il s’est possiblement publié plus d’articles concernant des insectes de cours d’eau que de lacs, au cours de la dernière décennie. Les échelles spatiales et temporelles qui sont utilisées en recherche lotique et lentique ont été caractérisées par l’étude du contenu de cinq revues clés de la discipline, soit environ 500 articles. La recherche sur les insectes aquatiques couvre une échelle temporelle relativement longue, mais des échelles spatiale et temporelle plus restreintes dans les eaux lotiques que lentiques. Le ratissage de la litérature afin de trouver des exemples de variabilité temporelle et spatiale coincidente révèle que l’usage de valeurs moyennes prévaut dans l’analyse des données, la tendance étant d’homogénéiser les données afin de réduire la variabilité spatiale et temporelle. Or, c’est justement la variabilité spatiale et temporelle qui pourrait expliquer les facteurs générant les patrons observés. Une démarche reposant sur l’étude de la variance par le dégroupement des données et l’examen des fluctuations et des extrêmes, pourrait être de loin plus informative et permettre d’élucider les mécanismes fondamentaux.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K. 1978. The chironomids of lake Målsjøen. A phenological, diversity, and production study. Norw. J. Ent. 25: 2137.Google Scholar
Allan, J.D. 1982. The effects of reduction in trout density on the invertebrate community of a mountain stream. Ecology 63: 14441455.CrossRefGoogle Scholar
Allan, J.D. 1987. Macroinvertebrate drift in a Rocky Mountain stream. Hydrobiologia 144: 261268.CrossRefGoogle Scholar
Armitage, P.D. 1971. Some aspects of the ecology of Pagastiella orophila (Diptera: Chironomidae) in the Lake Kuusijärvi, in the south of Finland. Can. Ent. 103: 306310.CrossRefGoogle Scholar
Bärlocher, F., Mackay, R.J., and Wiggins, G.B.. 1978. Detritus processing in a temporary vernal pool in southern Ontario. Arch. Hydrobiol. 81: 269295.Google Scholar
Barnes, J.R., and Shiozawa, D.K.. 1985. Drift in Hawaiian streams. Verh. int. Verein. theor. angew. Limnol. 22: 21192124.Google Scholar
Barton, D.R., and Hynes, H.B.N.. 1978. Seasonal variations in densities of macrobenthic populations in the wave-zone of north-central Lake Erie. J. Gt Lakes Res. 4: 5056.CrossRefGoogle Scholar
Beattie, D.M. 1978. Life-cycle and changes in carbohydrates, proteins and lipids of Pentapedilum uncinatum Goet. (Diptera: Chironomidae). Freshwat. Biol. 8: 109113.CrossRefGoogle Scholar
Borutzky, E.V. 1939. Dynamics of the biomass of Chironomus plumosus in the profundal of Lake Beloie. Trudȳ limnol. Sta. Kosine 22: 156195.Google Scholar
Bretschko, G. 1974. The chironomid fauna of a high-mountain lake (Vorderer Finstertaler See, Tyrol, Austria, 2237 m asl). Ent. Tidskr. 95 (Suppl.): 2233.Google Scholar
Brinkhurst, R.O. (Ed.). 1974. The Benthos of Lakes. Macmillan Press, London. 190 pp.CrossRefGoogle Scholar
Brittain, J.E. 1982. Biology of mayflies. A. Rev. Ent. 27: 119147.CrossRefGoogle Scholar
Brown, D.S. 1961. The food of the larvae of Chloëon dipterum L. and Baetis rhodani (Pictet) (Insecta, Ephemeroptera). J. Anim. Ecol. 30: 5575.CrossRefGoogle Scholar
Brusven, M.A. 1970. Drift periodicity and upstream dispersion of stream insects. J. ent. Soc. Br. Columb. 67: 4859.Google Scholar
Chimney, M.J., Winner, R.W., and Seilkop, S.K.. 1981. Prey utilization by Chaoborus punctipennis Say in a small, eutrophic reservoir. Hydrobiologia 85: 193199.CrossRefGoogle Scholar
Clifford, H.F. 1972. A years' study of the drifting organisms in a brown-water stream of Alberta, Canada. Can. J. Zool. 50: 975983.CrossRefGoogle Scholar
Clifford, H.F., Hamilton, H., and Killins, B.A.. 1979. Biology of the mayfly Leptophlebia cupida (Say) (Ephemeroptera: Leptophlebiidae). Can. J. Zool. 57: 10261045.CrossRefGoogle Scholar
Corrarino, C.A., and Brusven, M.A.. 1983. The effects of reduced stream discharge on insect drift and stranding of near shore insects. Freshwat. Invert. Biol. 2: 8898.CrossRefGoogle Scholar
Cowell, B.C., and Carew, W.C.. 1976. Seasonal and diel periodicity in the drift of aquatic insects in a subtropical Florida stream. Freshwat. Biol. 6: 587594.CrossRefGoogle Scholar
Cuffney, T.F., and Minshall, G.W.. 1981. Life history and bionomics of Arctopsyche grandis (Trichoptera) in a central Idaho stream. Holarct. Ecol. 4: 252262.Google Scholar
Danks, H.V. 1971. Overwintering of some north temperate and arctic Chironomidae. Can. Ent. 103: 18751910.CrossRefGoogle Scholar
Danks, H.V., and Oliver, D.R.. 1972 a. Diel periodicities of emergence of some high arctic Chironomidae (Diptera). Can. Ent. 104: 903916.CrossRefGoogle Scholar
Danks, H.V., and Oliver, D.R.. 1972 b. Seasonal emergence of some high arctic Chironomidae (Diptera). Can. Ent. 104: 661686.CrossRefGoogle Scholar
Dermott, R.M., Kalff, J., Leggett, W.C., and Spence, J.. 1977. Production of Chironomus, Procladius and Chaoborus at different levels of phytoplankton biomass in Lake Memphremagog, Quebec–Vermont. J. Fish. Res. Bd Can. 34: 20012007.CrossRefGoogle Scholar
Elliott, J.M. 1967. Invertebrate drift in a Dartmoor stream. Arch. Hydrobiol. 63: 202237.Google Scholar
Elliott, J.M. 1969. Life history and biology of Sericostoma personatum Spence (Trichoptera). Oikos 20: 110118.CrossRefGoogle Scholar
Elliott, J.M. 1970. The diel activity patterns of caddis larvae (Trichoptera). J. Zool. (Lond.) 160: 279290.CrossRefGoogle Scholar
Erman, N.A. 1981. Terrestrial feeding migration and life history of the stream-dwelling caddisfly, Desmona bethula (Trichoptera: Limnephilidae). Can. J. Zool. 59: 16581665.CrossRefGoogle Scholar
Erman, N.A. 1986. Movements of self-marked caddisfly larvae, Chyranda centralis (Trichoptera: Limnephilidae), in a Sierran spring stream, California, U.S.A. Freshwat. Biol. 16: 455464.CrossRefGoogle Scholar
Fuller, R.L., Roelofs, J.L., and Fry, T.J.. 1986. The importance of algae to stream invertebrates. J.N. Am. benthol. Soc. 5: 290296.CrossRefGoogle Scholar
Gibbs, K.E. 1979. Ovoviviparity and nymphal seasonal movements of Callibaetis spp. (Ephemeroptera: Baetidae) in a pond in southwestern Quebec. Can. Ent. 111: 927931.CrossRefGoogle Scholar
Grafius, E., and Anderson, N.H.. 1980. Population dynamics and role of two species of Lepidostoma (Trichoptera: Lepidostomatidae) in an Oregon coniferous forest stream. Ecology 61: 808816.CrossRefGoogle Scholar
Hall, R.J., Berner, L., and Cook, E.F.. 1975. Observations on the biology of Tricorythodes atratus McDunnough (Ephemeroptera: Tricorythidae). Proc. ent. Soc. Wash. 77: 3449.Google Scholar
Hare, L., and Carter, J.C.H.. 1986. The benthos of a natural West African lake, with emphasis on the diel migrations and lunar and seasonal periodicities of the Chaoborus populations (Diptera, Chaoboridae). Freshwat. Biol. 16: 759780.CrossRefGoogle Scholar
Harper, F., Magnin, E., and Harper, P.P.. 1983. Diel periodicity of emerging mayflies (Insecta: Ephemeroptera) in a Laurentian stream. Aquat. Insects 5: 2131.CrossRefGoogle Scholar
Harper, P.P. 1978. Variations in the production of emerging insects from a Quebec stream. Verh. int. Verein. theor. angew. Limnol. 20: 13171323.Google Scholar
Harper, P.P., and Cloutier, L.. 1986. Spatial structure of the insect community of a small dimictic lake in the Laurentians (Québec). Int. Revue ges. Hydrobiol. 71: 655685.CrossRefGoogle Scholar
Harper, P.P., and Pilon, J.-G.. 1970. Annual patterns of emergence of some Quebec stoneflies (Insecta: Plecoptera). Can. J. Zool. 48: 681694.CrossRefGoogle Scholar
Hart, D.D., and Resh, V.H.. 1980. Movement patterns and foraging ecology of a stream caddisfly larva. Can. J. Zool. 58: 11741185.CrossRefGoogle ScholarPubMed
Hartland-Rowe, R. 1964. Factors influencing the life-histories of some stream insects in Alberta. Verh. int. Verein. theor. angew. Limnol. 15: 917925.Google Scholar
Hauer, F.R., and Stanford, J.A.. 1981. Larval specialization and phenotypic variation in Arctopsyche grandis (Trichoptera: Hydropsychidae). Ecology 62: 645653.CrossRefGoogle Scholar
Hawkins, C.P., and Sedell, J.R.. 1981. Longitudinal and seasonal changes in functional organization of macroinvertebrate communities in four Oregon streams. Ecology 62: 387397.CrossRefGoogle Scholar
Hynes, H.B.N. 1970. The Ecology of Running Waters. University of Toronto Press, Toronto. 555 pp.Google Scholar
Illies, J. 1978. Vergleichende Emergenzmessung im Breitenbach 1969–1976. Arch. Hydrobiol. 82: 432448.Google Scholar
Illies, J. 1980. Ephemeropteren-Emergenz in zwei Lunzer Bächen (1972–1977). Arch. Hydrobiol. 90: 217229.Google Scholar
Iwakuma, T., and Yasuno, M.. 1981. Chironomid populations in highly eutrophic Lake Kasumigaura. Verh. int. Verein. theor. angew. Limnol. 21: 664674.Google Scholar
Johannsson, O.E. 1978. Co-existence of larval Zygoptera (Odonata) common to the Norfolk Broads (U.K.) Oecologia (Berl.) 32: 303321.CrossRefGoogle Scholar
Jóhnson, J.H. 1983. Diel food habits of two species of setipalpian stoneflies (Plecoptera) in tributaries of the Clearwater River, Idaho. Freshwat. Biol. 13: 105111.CrossRefGoogle Scholar
Jónasson, P.M. 1965. Factors determining population size of Chironomus anthracinus in Lake Esrom. Mitt. int. Verein. theor. angew. Limnol. 13: 139162.Google Scholar
Jónasson, P.M. 1972. Ecology and production of the profundal benthos in relation to phytoplankton in Lake Esrom. Oikos Suppl. 14: 1148.Google Scholar
Kerst, C.D., and Anderson, N.H.. 1975. The Plecoptera community of a small stream in Oregon U.S.A. Freshwat. Biol. 5: 189203.CrossRefGoogle Scholar
Koskinen, R. 1968. Seasonal and diel emergence of Chironomus salinarius Kieff. (Dipt., Chironomidae) near Bergen, western Norway. Annls Zool. fenn. 5: 6570.Google Scholar
Lamberti, G.A., Feminella, J.W., and Resh, V.H.. 1987. Herbivory and intraspecific competition in a stream caddisfly population. Oecologia (Berl.) 73: 7581.CrossRefGoogle Scholar
Lamberti, G.A., and Resh, V.H.. 1983. Stream periphyton and insect herbivores: an experimental study of grazing by a caddisfly population. Ecology 64: 11241135.CrossRefGoogle Scholar
Langford, T.E., and Daffern, J.R.. 1975. The emergence of insects from a British river warmed by power station cooling water. Part I — The use and performance of insect emergence traps in a large, spate-river and the effects of various factors on total catches, upstream and downstream of the cooling-water outfalls. Hydrobiologia 46: 71114.CrossRefGoogle Scholar
Lehmkuhl, D.M., and Anderson, N.H.. 1972. Microdistribution and density as factors affecting the downstream drift of mayflies. Ecology 53: 661667.CrossRefGoogle Scholar
LeSage, L., and Harrison, A.D.. 1980. The biology of Cricotopus (Chironomidae: Orthocladiinae) in an algalenriched stream: Part I. Normal biology. Arch. Hydrobiol. Suppl. 57: 375418.Google Scholar
Lewis, W.M. Jr., 1977. Feeding selectivity of a tropical Chaoborus population. Freshwat. Biol. 7: 311325.CrossRefGoogle Scholar
Macan, T.T. 1964. The Odonata of a moorland fishpond. Int. Revue ges. Hydrobiol. 49: 325360.CrossRefGoogle Scholar
Mackay, R.J. 1979. Life history patterns of some species of Hydropsyche (Trichoptera: Hydropsychidae) in southern Ontario. Can. J. Zool. 57: 963975.CrossRefGoogle Scholar
Mackay, R.J. 1984. Life history patterns of Hydropsyche bronta and H. morosa (Trichoptera: Hydropsychidae) in summer-warm rivers of southern Ontario. Can. J. Zool. 62: 271275.CrossRefGoogle Scholar
Malicky, H. 1980. Evidence for seasonal migrations of larvae of two species of philopotamid caddisflies (Trichoptera) in a mountain stream in lower Austria. Aquat. Insects 2: 153160.CrossRefGoogle Scholar
McElravy, E.P. 1988. Temporal variability in abundance of aquatic insects: a comparison of temperate and tropical environments. Ph.D. thesis, University of California, Berkeley. 206 pp.Google Scholar
McElravy, E.P., Lamberti, G.A., and Resh, V.H.. 1989. Year-to-year variation in the aquatic macroinvertebrate fauna of a northern California stream. J. N. Am. benthol. Soc. 8: 5163.CrossRefGoogle Scholar
McGaha, Y.J. 1952. The limnological relations of insects to certain aquatic flowering plants. Trans. Am. microsc. Soc. 71: 355381.CrossRefGoogle Scholar
Mecom, J.O. 1970. Evidence of diurnal feeding activity in Trichoptera larvae. J. Grad. Res. Center Sth Methodist Univ. 38: 4457.Google Scholar
Moore, M.V. 1988. Differential use of food resources by the instars of Chaoborus punctipennis. Freshwat. Biol. 19: 249268.CrossRefGoogle Scholar
Morgan, N.C., and Waddell, A.B.. 1961. Insect emergence from a small trout loch and its bearing on the food supply of fish. Dep. Agric. Fish. Scotland, Freshwat. Salmon Fish. Res. 25. 39 pp.Google Scholar
Mundie, J.H. 1957. The ecology of Chironomidae in storage reservoirs. Trans. R. ent. Soc. Lond. 109: 149232.CrossRefGoogle Scholar
Mundie, J.H. 1959. The diurnal activity of the larger invertebrates at the surface of Lac La Ronge, Saskatchewan. Can. J. Zool. 37: 945956.CrossRefGoogle Scholar
Nagell, B. 1979. Overwintering of larvae of Cloeon dipterum (L.) in an ice covered and anoxic pond. pp. 193198in Pasternak, K., and Sowa, R. (Eds.), Proc. 2nd int. Conf. Ephem. Polska Akademia Nauk, Warsaw.Google Scholar
Newbury, R.W., McCullough, G.K., and Hecky, R.E.. 1984. The Southern Indian Lake impoundment and Churchill River diversion. Can. J. Fish. Aquat. Sci. 41: 548557.CrossRefGoogle Scholar
Neves, R.J. 1979. Movements of larval and adult Pycnopsyche guttifer (Walker) (Trichoptera: Limnephilidae) along Factory Brook, Massachusetts. Am. Midl. Nat. 102: 5158.CrossRefGoogle Scholar
Nishimura, N. 1984. Ecological studies on the net-spinning caddisfly, Stenopsyche marmorata Navas (Trichoptera: Stenopsychidae) 6. Larval and pupal density in the Maruyama River, Central Japan, with special reference to floods and after-flood recovery processes. Physiol. Ecol. Jap. 21: 134.Google Scholar
Paasivirta, L. 1974. Insect emergence and output of incorporated energy and nutrients from the oligotrophic Lake Pääjärvi, southern Finland. Annls Zool. fenn. 11: 126140.Google Scholar
Palmén, E. 1955. Diel periodicity of pupal emergence in natural populations of chironomids (Diptera). Suomal. eläin-ja kasvit. Seur. van. Julk. 17: 130.Google Scholar
Pearson, W.D., and Franklin, D.R.. 1968. Some factors affecting drift rates of Baetis and Simuliidae in a large river. Ecology 49: 7581.CrossRefGoogle Scholar
Pedersen, B.V. 1988. Mechanisms underlying the stable co-existence of two genetically distinct populations of Chironomus plumosus (Diptera: Chironomidae) in Lake Tystrup-Bavelse, Denmark. Holarct. Ecol. 11: 106110.Google Scholar
Peters, W.L., and Peters, J.G.. 1977. Adult life and emergence of Dolania americana in Northwestern Florida (Ephemeroptera: Behningiidae). Int. Revue ges. Hydrobiol. 62: 409438.CrossRefGoogle Scholar
Petr, T. 1973. Some factors limiting the distribution of Povilla adusta Navas (Ephemeroptera, Polymitarcidae) in African lakes. pp. 223230in Peters, W.L., and Peters, J.G. (Eds.), Proc. 1st int. Conf. Ephem. Brill, Leiden.Google Scholar
Radford, D.S., and Hartland-Rowe, R.. 1971. Emergence patterns of some Plecoptera in two mountain streams in Alberta. Can. J. Zool. 49: 657662.CrossRefGoogle Scholar
Resh, V.H. 1976. Life histories of coexisting species of Ceraclea caddisflies (Trichoptera: Leptoceridae): the operation of independent functional units in a stream ecosystem. Can. Ent. 108: 13031318.CrossRefGoogle Scholar
Resh, V.H. 1977. Habitat and substrate influences on population and production dynamics of a stream caddisfly, Ceraclea ancylus (Leptoceridae). Freshwat. Biol. 7: 261277.CrossRefGoogle Scholar
Resh, V.H. 1979. Sampling variability and life history features: basic considerations in the design of aquatic insect studies. J. Fish. Res. Bd Can. 36: 290311.CrossRefGoogle Scholar
Resh, V.H. 1988. Publication patterns in entomology: an example based on aquatic insects. Bull. ent. Soc. Am. 34: 145150.Google Scholar
Resh, V.H., Brown, A.V., Covich, A.P., Gurtz, M.E., Li, H.W., Minshall, G.W., Reice, S.R., Sheldon, A.L., Wallace, J.B., and Wissmar, R.C.. 1988. The role of disturbance in stream ecology. J. N. Am. benthol. Soc. 7: 433455.CrossRefGoogle Scholar
Resh, V.H., Rosenberg, D.M., and Wiens, A.P.. 1983. Emergence of caddisflies (Trichoptera) from eroding and non-eroding shorelines of Southern Indian Lake, Manitoba, Canada. Can. Ent. 115: 15631572.CrossRefGoogle Scholar
Richardson, J.S., and Clifford, H.F.. 1986. Phenology and ecology of some Trichoptera in a low-gradient boreal stream. J. N. Am. benthol. Soc. 5: 191199.CrossRefGoogle Scholar
Richardson, J.S., and Mackay, R.J.. 1984. A comparison of the life history and growth of Limnephilus indivisus (Trichoptera: Limnephilidae) in three temporary pools. Arch. Hydrobiol. 99: 515528.Google Scholar
Rosenberg, D.M. 1987. Enriching the product. Presidential address to the 35th annual meeting of the North American Benthological Society, Orono, Maine. Bull. N. Am. benthol. Soc. 4: 135157.Google Scholar
Rosenberg, D.M., Giberson, D.J., and Wiens, A.P.. 1988. Natural variability confounding environmental impact assessment: Hexagenia (Ephemeroptera) in Southern Indian Lake. Paper presented, 36th A. Mtg N. Am. benthol. Soc., Tech. Inf. Wkshop “The role of benthos in impact assessment”, May 19, 1988, Univ. Alabama, Tuscaloosa.Google Scholar
Rosenberg, D.M., and Wiens, A.P.. 1985. Changes in populations of Hexagenia limbata and Hexagenia rigida (Ephemeroptera: Ephemeridae) in Southern Indian Lake, Manitoba. Paper presented, 33rd A. Mtg N. Am. benthol. Soc., June 25–28, 1985, Oregon State Univ., Corvallis.Google Scholar
Sandberg, G. 1969. A quantitative study of chironomid distribution and emergence in Lake Erken. Arch. Hydrobiol. Suppl. 35: 119201.Google Scholar
Scott, W., and Opdyke, D.F.. 1941. The emergence of insects from Winona Lake. Invest. Indiana Lakes Streams 2: 314.Google Scholar
Sprules, W.M. 1947. An ecological investigation of stream insects in Algonquin Park, Ontario. Univ. Toronto Stud. biol. Ser. 56: 181.Google Scholar
Stewart, K.W., and Szczytko, S.W.. 1983. Drift of Ephemeroptera and Plecoptera in two Colorado rivers. Freshwat. Invert. Biol. 2: 117131.CrossRefGoogle Scholar
Strayer, D. 1986. An essay on long-term ecological studies. Bull. ecol. Soc. Am. 67: 271275.Google Scholar
Tanida, K. 1980. Life history and distribution of three species of Hydropsyche (Trichoptera: Hydropsychidae) in the River Kibune (Kyoto, Central Japan), with particular references to the variations in their life cycles and the relation of larval growth to their density. Jap. J. Limnol. 41: 95111.CrossRefGoogle Scholar
Ten Winkel, E.H., and Davids, C.. 1987. Population dynamic aspects of chironomid larvae of the littoral zone of Lake Maarsseveen I. Hydrobiol. Bull. 21: 8194.CrossRefGoogle Scholar
Thorup, J., and Iversen, T.M.. 1974. Ingestion by Sericostoma personatum Spence (Trichoptera, Sericostomatidae). Arch. Hydrobiol. 74: 3947.Google Scholar
Titmus, G. 1979. The emergence of midges (Diptera: Chironomidae) from a wet gravel-pit. Freshwat. Biol. 9: 165179.CrossRefGoogle Scholar
Van Der Velde, G., and Hiddink, R.. 1987. Chironomidae mining in Nuphar lutea (L.) Sm. (Nymphaeaceae). Ent. scand. Suppl. 29: 255264.Google Scholar
Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., and Cushing, C.E.. 1980. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 37: 130137.CrossRefGoogle Scholar
Vannote, R.L., and Sweeney, B.W.. 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am. Nat. 115: 667695.CrossRefGoogle Scholar
Wartinbee, D.C., and Coffman, W.P.. 1976. Quantitative determination of chironomid emergence from enclosed channels in a small lotic ecosystem. Am. Midl. Nat. 95: 479485.CrossRefGoogle Scholar
Waters, T.F., and Crawford, G.W.. 1973. Annual production of a stream mayfly population: a comparison of methods. Limnol. Oceanogr. 18: 286296.CrossRefGoogle Scholar
Welch, H.E. 1976. Ecology of Chironomidae (Diptera) in a polar lake. J. Fish. Res. Bd Can. 33: 227247.CrossRefGoogle Scholar
Welch, H.E., Jorgenson, J.K., and Curtis, M.F.. 1988. Emergence of Chironomidae (Diptera) in fertilized and natural lakes at Saqvaqjuac, N.W.T. Can. J. Fish. Aquat. Sci. 45: 731737.CrossRefGoogle Scholar
Wiley, M.J., and Mozley, S.C.. 1978. Pelagic occurrence of benthic animals near shore in Lake Michigan. J. Gt Lakes Res. 4: 201205.CrossRefGoogle Scholar
Williams, D.D. 1982. Emergence pathways of adult insects in the upper reaches of a stream. Int. Revue ges. Hydrobiol. 67: 223234.Google Scholar
Wolfe, D.A., Champ, M.A., Flemer, D.A., and Mearns, A.J.. 1987. Long-term biological data sets: their role in research, monitoring, and management of estuarine and coastal marine systems. Estuaries 10: 181193.CrossRefGoogle Scholar
Wrubleski, D.A. 1984. Species composition, emergence phenologies, and relative abundances of Chironomidae (Diptera) from the Delta Marsh, Manitoba, Canada. M.Sc. thesis, University of Manitoba, Winnipeg. 115 pp.Google Scholar
Yamagishi, H., and Fukuhara, H.. 1971. Ecological studies on chironomids in Lake Suwa. I. Population dynamics of two large chironomids, Chironomus plumosus L. and Spaniotoma akamusi Tokunaga. Oecologia (Berl.) 7: 309327.CrossRefGoogle Scholar