Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T00:10:59.243Z Has data issue: false hasContentIssue false

Abundance and stability are species traits for four chewing lice (Phthiraptera: Menoponidae, Philopteridae) on feral pigeons, Columba livia (Aves: Columbiformes: Columbidae)

Published online by Cambridge University Press:  23 January 2014

Terry D. Galloway*
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Robert J. Lamb
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
*
1Corresponding author (e-mail: terry_galloway@umanitoba.ca).

Abstract

Population parameters of ectoparasites on feral pigeons, Columba livia Gmelin (Aves: Columbiformes: Columbidae), were estimated from 1995–2012 in southern Manitoba, Canada. The ectoparasites are chewing lice (Phthiraptera): Philopteridae – Campanulotes compar (Burmeister), Columbicola columbae (Linnaeus), and Coloceras tovornikae Tendeiro; Menoponidae – Hohorstiella lata (Piaget). We tested the hypotheses that both abundance and population stability are species-specific traits. Over 10 years, the four species of lice had distinct population dynamics. Campanulotes compar and C. columbae were more abundant than C. tovornikae and H. lata, had higher male to female sex ratios and higher ratios of nymphs to females, different levels of aggregation, and more stable populations. Campanulotes compar was more prevalent than C. columbae and its prevalence was more stable, and the two species also showed differences in the levels and stabilities of male and nymph to female ratios. Coloceras tovornikae had a higher prevalence and male to female sex ratio than H. lata, but the two species showed similar levels of stability for these parameters. The level of stability of these populations was relatively high compared with many other organisms, and in particular higher than for plant ectoparasites (Hemiptera: Aphididae). Although the four species occupy similar habitats, often on the same bird, and three of the four feed in a similar way, the population biology of each species is distinct. The life history traits that lead to these differences have yet to be determined.

Résumé

Nous avons déterminé les caractéristiques démographiques des ectoparasites sur des pigeons sauvages, Columba livia Gmelin (Aves: Columbiformes: Columbidae), de 1995 à 2012 dans le sud du Manitoba, Canada. Ces ectoparasites sont des ricins (Phthiraptera) Philopteridae, soit Campanulotes compar (Burmeister), Columbicola columbae (Linnaeus) et Coloceras tovornikae Tendeiro, et Menoponidae, soit Hohorstiella lata (Piaget). Nous avons testé les hypothèses selon lesquelles tant l'abondance que la stabilité des populations sont des caractéristiques spécifiques à l'espèce. Sur une période de 10 ans, les quatre espèces de ricins ont connu des dynamiques de population distinctes. Campanulotes compar et C. columbae sont plus abondants que C. tovornikae et H. lata, leurs rapports mâles:femelles et larves:femelles plus élevés, leurs degrés d'agrégation différents et leurs populations plus stables. La prévalence de C. compar est plus grande et plus stable que celle de C. columbae et les deux espèces ont des valeurs et des stabilités des rapports mâles:femelles et larves:femelles différentes. La prévalence de C. tovornikae est plus grande que celle d’H. lata et son rapport mâles:femelles plus élevé, mais les deux espèces affichent des niveaux semblables de stabilité pour ces deux caractéristiques. Les niveaux de stabilité de ces populations sont relativement élevés comparés à ceux de plusieurs autres organismes, plus en particulier que ceux des ectoparasites des plantes (Hemiptera: Aphididae). Bien que les quatre espèces occupent des habitats semblables, souvent sur le même oiseau, et que trois d'entre elles se nourrissent de manière similaire, la démographie biologique de chaque espèce est particulière. Les caractéristiques du cycle biologique qui expliquent ces différences restent à découvrir.

Type
Biodiversity & Evolution
Copyright
Copyright © Entomological Society of Canada 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Kevin Floate

References

Anderson, R.M.May, R.M. 1978. Regulation and stability of host-parasite population interactions I. Regulatory processes. Journal of Animal Ecology, 47: 219247.Google Scholar
Arneberg, P., Skorping, A., Read, A.F. 1997. Is population density a species character? Comparative analyses of the nematode parasites of mammals. Oikos, 80: 289300.Google Scholar
Ash, J.S. 1960. A study of the Mallophaga of birds with particular reference to their ecology. Ibis, 102: 93110.Google Scholar
Bush, S.E., Harbison, C.W., Slager, D.L., Peterson, A.T., Price, R.D., Clayton, D.H. 2009. Geographic variation in the community structure of lice on western scrub-jays. Journal of Parasitology, 95: 1013.CrossRefGoogle ScholarPubMed
Bush, S.E.Malenke, J.R. 2008. Host defence mediates interspecific competition in ectoparasites. Journal of Animal Ecology, 77: 558564.Google Scholar
Clayton, D.H.Drown, D.M. 2001. Critical evaluation of five methods for quantifying chewing lice (Insecta: Phthiraptera). Journal of Parasitology, 87: 12911300.CrossRefGoogle ScholarPubMed
Clayton, D.H., Koop, J.A.H., Harbison, C.W., Moyer, B.R., Bush, S.E. 2010. How birds combat ectoparasites. Open Ornithology Journal, 3: 4171.CrossRefGoogle Scholar
Clayton, D.H., Lee, P.L.M., Tompkins, D.M., Brodie, E.D. III 1999. Reciprocal natural selection on host-parasite phenotypes. American Naturalist, 154: 261270.Google Scholar
Clayton, D.H., Moyer, B.R., Bush, S.E., Jones, T.G., Gardiner, D.W., Rhodes, B.B., Goller, F. 2005. Adaptive significance of avian beak morphology for ectoparasite control. Proceedings of the Royal Society B, 272: 811817.CrossRefGoogle ScholarPubMed
Clayton, D.H.Tompkins, D.M. 1995. Comparative effects of mites and lice on the reproductive success of rock doves (Columba livia). Parasitology, 110: 195206.Google Scholar
Clayton, D.H.Walther, B.A. 2001. Influence of host ecology and morphology on the diversity of Neotropical bird lice. Oikos, 94: 455467.Google Scholar
Corbineau, A., Rouyer, T., Cazelles, B., Fromentin, J.-M., Fonteneau, A., Ménard, F. 2008. Time series analysis of tuna and swordfish catches and climate variability in the Indian Ocean (1968–2003). Aquatic Living Resources, 21: 277285.Google Scholar
Dochtermann, N.A.Gienger, C.M. 2012. Individual variability in life-history traits drives population size stability. Current Zoology, 58: 358362.Google Scholar
Dochtermann, N.A.Peacock, M.M. 2012. Inter- and intra-specific patterns of density dependence and population size variability in Salmoniformes. Oecologia, 171: 153162.Google Scholar
Galloway, T.D.Palma, R.L. 2008. Serendipity with chewing lice (Phthiraptera: Menoponidae, Philopteridae) infesting rock pigeons and mourning doves (Aves: Columbiformes: Columbidae) in Manitoba, with new records for North America and Canada. The Canadian Entomologist, 140: 208218.CrossRefGoogle Scholar
Harbison, C.W., Bush, S.E., Malenke, J.R., Clayton, D.H. 2008. Comparative transmission dynamics of competing parasite species. Ecology, 89: 31863194.Google Scholar
Heath, J.P. 2006. Quantifying temporal variability in population abundances. Oikos, 115: 573581.Google Scholar
Jovani, R., Schielzeth, H., Mavor, R., Oro, D. 2012. Specificity of grouping behaviour: comparing colony sizes for the same seabird species in distant populations. Journal of Avian Biology, 43: 16.Google Scholar
Krasnov, B.R., Shenbrot, G.I., Khokolova, I.S., Poulin, R. 2006. Is abundance a species attribute? An example with haematophagous ectoparasites. Oecologia, 150: 132140.Google Scholar
Krištofík, J., Darolová, A., Hoi, C., Hoi, H. 2007. Determinants of population biology of the chewing louse Brueelia apiastri (Mallophaga, Philopteridae) on the European bee-eater. Parasitology, 134: 399403.Google Scholar
Lamb, R.J.MacKay, P.A. 2010. Stability of natural populations of an aphid, Uroleucon rudbeckiae, at three spatial scales. The Canadian Entomologist, 142: 3651.Google Scholar
Lamb, R.J., MacKay, P.A., Alyokhin, A. 2011. Population variability and persistence of three aphid pests of potatoes over 60 years. The Canadian Entomologist, 143: 91101.Google Scholar
Lamb, R.J., MacKay, P.A., Alyokhin, A. 2013. Seasonal dynamics of three coexisting aphid species: implications for estimating population variability. The Canadian Entomologist, 145: 283291.Google Scholar
Lamb, R.J., MacKay, P.A., Wool, D. 2012. Population stability of a tree-galling aphid, Baizongia pistaciae, at three spatial scales. The Canadian Entomologist, 144: 406418.Google Scholar
MacArdle, B.H., Gaston, K.J., Lawton, J.H. 1990. Variation in the size of animal populations: patterns, problems and artifacts. Journal of Animal Ecology, 59: 439454.Google Scholar
Malenke, J.R., Newbold, N., Clayton, D.H. 2011. Condition-specific competition governs the geographic distribution and diversity of ectoparasites. American Naturalist, 177: 522534.Google Scholar
Mironov, S.V.Galloway, T.D. 2002. Four new species of feather mites (Acari: Analgoidea). The Canadian Entomologist, 134: 605618.Google Scholar
Møller, A.P.Rózsa, L. 2005. Parasite biodiversity and host defenses: chewing lice and immune response of their avian hosts. Oecologia, 142: 169176.Google Scholar
Moyer, B.R., Drown, D.M., Clayton, D.H. 2002. Low humidity reduces ectoparasite pressure: implications for host life history evolution. Oikos, 97: 223228.Google Scholar
Poulin, R. 1999. Body size vs abundance among parasite species: positive relationships? Ecography, 22: 246250.Google Scholar
Poulin, R. 2006. Variation in infection parameters among populations within parasite species: intrinsic properties versus local factors. International Journal of Parasitology, 36: 877885.Google Scholar
Poulin, R. 2007a. Are there general laws in parasite ecology? Parasitology, 134: 763776.Google Scholar
Poulin, R. 2007b. Evolutionary ecology of parasites. Princeton University Press, Princeton, New Jersey, United States of America.Google Scholar
Price, P.W. 1980. Evolutionary biology of parasites. Monographs in Population Biology 15. Princeton University Press, Princeton, New Jersey, United States of America.Google Scholar
Rohlf, F.J.Sokal, R.R. 1981. Statistical Tables. W.H. Freeman and Company, San Francisco, California, United States of America.Google Scholar
Rózsa, L., Reiczigel, J., Majoros, G. 2000. Quantifying parasites in samples of hosts. Journal of Parasitology, 86: 228232.Google Scholar
Sokal, R.R.Rohlf, F.J. 1981. Biometry. W.H. Freeman and Company, New York, New York, United States of America.Google Scholar
SYSTAT. 2009. SYSYAT 13, Statistics I. SYSTAT Software, Inc., Chicago, Illinois, United States of America.Google Scholar
Szczykutowicz, A., Adamski, Z., Hromada, M., Tryjanowski, P. 2006. Patterns in the distribution of avian lice (Phthiraptera: Amblycera, Ischnocera) living on the great grey shrike Lanius excubitor. Parasitology Research, 98: 507510.CrossRefGoogle ScholarPubMed
Taylor, L.R.Woiwod, I.P. 1980. Temporal stability as a density-dependent species characteristic. Journal of Animal Ecology, 49: 209224.Google Scholar
Whiteman, N.K.Parker, P.G. 2004. Effects of host sociality on ectoparasite population biology. Journal of Parasitology, 90: 939947.CrossRefGoogle ScholarPubMed