Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T17:47:45.315Z Has data issue: false hasContentIssue false

AGE-DEPENDENT ASSOCIATIVE LEARNING BY EXERISTES ROBORATOR (F.) (HYMENOPTERA: ICHNEUMONIDAE)1

Published online by Cambridge University Press:  31 May 2012

A.R. Wardle
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6
J.H. Borden
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6

Abstract

Females of the polyphagous ichneumonid parasitoid, Exeristes roborator (F.), that were conditioned for 10 days to hosts in a specific habitat demonstrated associative learning by responding with ovipositor probes into the habitat alone. Females conditioned immediately after eclosion showed a higher participation rate, intensity, and duration (approximately 7 days) of learned behavior than those conditioned 5 or 10 days after eclosion, despite the fact that newly eclosed females did not probe for hosts with their ovipositors until 4 or 5 days after eclosion. The reduction in the learning ability of females within a short time after eclosion may impart a selective advantage to E. roborator by reducing the costs of learning. It could also reflect developmental constraints on the process of learning. The results suggest that carefully controlled associative learning could be exploited to improve the efficiency of host location by parasitoids released in biological-control programs.

Résumé

Des femelles du parasitoïde ichneumonide polyphage Exeristes roborator (F.) conditionnées pendant 10 jours à la présence d'hôtes dans un habitat spécifique ont fait preuve d'apprentissage par association en sondant cet habitat de leur ovipositeur en l'absence d'hôtes. Des femelles conditionnées immédiatement après l'émergence ont montré une participation plus nombreuse, une intensité plus élevée et une durée (environ 7 jours) plus longue de ce comportement appris que celles conditionnées 5 ou 10 jours après l'émergence, et ce malgré que les femelles nouvellement émergées ne cherchent pas d'hôtes avec leur ovipositeur avant 4 ou 5 jours. La réduction de la capacité d'apprentissage des femelles peu de temps après l'émergence est peut-être sélectivement avantageuse en évitant les coûts de l'apprentissage. Elle pourrait aussi indiquer que l'apprentissage dépend de contraintes ontogénétiques. Les résultats permettent de croire qu'il serait peut-être possible de contrôler l'apprentissage par association afin d'améliorer l'efficacité de recherche des parasitoïdes relâchés lors de programmes de lutte biologique.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, A.P. 1966. Associative learning in Itoplectis conquisitor (Say) (Hymenoptera: Ichneumonidae). Can. Ent. 98: 213223.CrossRefGoogle Scholar
Arthur, A.P. 1967. Influence of position and size of host shelter on host-searching by Itoplectis conquisitor (Hymenoptera: Ichneumonidae). Can. Ent. 99: 877886.CrossRefGoogle Scholar
Arthur, A.P. 1971. Associative learning by Nemeritis canescens (Hymenoptera: Ichneumonidae). Can. Ent. 103: 11371141.CrossRefGoogle Scholar
Baker, W.A., Bradley, W.G, and Clark, C.A. 1949. Biological control of the European corn borer in the United States. U.S. Dept. Agric. Tech. Bull. 983.Google Scholar
Baker, W.A., and Jones, L.G. 1934. Studies of Exeristes roborator (Fab.), a parasite of the European corn borer, in the Lake Erie area. U.S. Dept. Agric. Tech. Bull. 460.Google Scholar
Clausen, C.P. 1978 a. Olethreutidae. pp. 210222in Clausen, C.P. (Ed.), Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review. U.S. Dept. Agric. Handb. 480. Washington, DC.Google Scholar
Clausen, C.P. 1978 b. Pyralidae. pp. 227234in Clausen, C.P. (Ed.), Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review. U.S. Dept. Agric. Handb. 480. Washington, DC.Google Scholar
Clausen, C.P., and Oatman, E.R. 1978. Crambidae. pp. 176183in Clausen, C.P. (Ed.), Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review. U.S. Dept. Agric. Handb. 480. Washington, DC.Google Scholar
Jaenike, J. 1982. Environmental modification of oviposition behavior in Drosophila. Am. Nat. 119: 784802.CrossRefGoogle Scholar
Krombein, K.V., Hurd, P.D Jr., Smith, D.R, and Burks, B.D. 1979. Catalog of Hymenoptera in America North of Mexico. Vol. 1. Symphyta and Apocrita (Parasitica). Smithsonian Institution Press, Washington, DC.Google Scholar
MacLeod, J.H. 1962. Biological control of pests of crops, fruit trees, ornamentals, and weeds in Canada up to 1959. pp. 1–33 in A Review of the Biological Control Attempts Against Insects and Weeds in Canada. Commonwealth Institute of Biological Control Tech. Comm. No. 2, Commonwealth Agricultural Bureaux, Farnham Royal, England.Google Scholar
McGugan, B.M., and Coppel, H.C. 1962. Biological control of forest insects, 1910–1958. pp. 35216in A Review of the Biological Control Attempts Against Insects and Weeds in Canada. Commonwealth Institute of Biological Control Tech. Comm. No. 2, Commonwealth Agricultural Bureaux, Farnham Royal, England.Google Scholar
Miller, R.G. Jr., 1981. Simultaneous statistical inference. Springer–Verlag, NY.CrossRefGoogle Scholar
Monteith, L.G. 1963. Habituation and associative learning in Drino bohemica Mesn. (Diptera: Tachinidae). Can. Ent. 95: 418425.CrossRefGoogle Scholar
Oatman, E.R. 1978. Gelechiidae. pp. 185190in Clausen, C.P. (Ed.), Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review. U.S. Dept. Agric. Handb. 480. Washington, DC.Google Scholar
Parker, R.E. 1979. Introductory Statistics for Biology. E. Arnold, London.Google Scholar
Prokopy, R.J., Averill, A.L, Cooley, S.S, and Roitberg, C.A. 1982. Associative learning in egglaying site selection by apple maggot flies. Science 218: 7677.CrossRefGoogle ScholarPubMed
Sokal, R.R., and Rohlf, F.J. 1981. Biometry. W.H. Freeman and Co., San Francisco.Google Scholar
Syed, A. 1985. A new rearing device for Exeristes roborator (F.). J. econ. Ent. In press.CrossRefGoogle Scholar
Taylor, R.J. 1974. Role of learning in insect parasitism. Ecol. Monogr. 44: 89104.CrossRefGoogle Scholar
Thompson, W.R. 1957. A Catalogue of the Parasites and Predators of Insect Pests. Section 2. Host Parasite Catalogue. Part 4. Hosts of the Hymenoptera (Ichneumonidae). Commonwealth Institute of Biological Control, Ottawa.Google Scholar
Thorpe, W.H. 1963. Learning and Instinct in Animals. Harvard University Press, Cambridge, MA.Google Scholar
Vinson, S.B. 1976. Host selection by insect parasitoids. A. Rev. Ent. 21: 109133.CrossRefGoogle Scholar
Vinson, S.B., Barfield, C.S, and Henson, R.D. 1977. Oviposition behavior of Bracon mellitor, a parasitoid of the boll weevil (Anthonomus grandis). II. Associative learning. Physiol. Ent. 2: 157164.CrossRefGoogle Scholar