Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:06:26.741Z Has data issue: false hasContentIssue false

Agrilus auroguttatus exit hole distributions on Quercus agrifolia boles and a sampling method to estimate their density on individual trees

Published online by Cambridge University Press:  16 July 2012

Laurel J. Haavik*
Affiliation:
Department of Entomology, One Shields Avenue, University of California, Davis, California 95616, United States of America
Tom W. Coleman
Affiliation:
United States Department of Agriculture Forest Service, Forest Health Protection, 602 South Tippecanoe Street, San Bernardino, California 92408, United States of America
Mary Louise Flint
Affiliation:
Department of Entomology, One Shields Avenue, University of California, Davis, California 95616, United States of America
Robert C. Venette
Affiliation:
United States Department of Agriculture Forest Service, Northern Research Station, 1561 Lindig Street, St. Paul, Minnesota 55108, United States of America
Steven J. Seybold
Affiliation:
United States Department of Agriculture Forest Service, Pacific Southwest Research Station, 720 Olive Drive, Suite D, Davis, California 95616, United States of America
*
1Corresponding author (e-mail: ljhaavik@gmail.com).

Abstract

In recent decades, invasive phloem and wood borers have become important pests in North America. To aid tree sampling and survey efforts for the newly introduced goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), we examined spatial patterns of exit holes on the boles (trunks) of 58 coast live oak, Quercus agrifolia Née (Fagaceae), trees at five sites in San Diego County, southern California, United States of America. Agrilus auroguttatus exit hole densities were greater at the root collar than at mid-boles (6.1 m above ground). Dispersion patterns of exit holes on lower boles (≤1.52 m) were random for trees with low exit hole densities and aggregated for trees with high exit hole densities. The mean exit hole density measured from three randomly chosen quadrats (0.09 m2) provided a statistically reliable estimate of the true mean exit hole density on the lower bole, with <25% error from the true mean. For future sampling and survey efforts in southern California oak forests and woodlands, exit hole counts within a 0.09 m2 quadrat could be made at any three locations on lower Q. agrifolia boles to accurately estimate A. auroguttatus exit hole densities at the individual tree level.

Résumé

Au cours des dernières décennies en Amérique du Nord, des insectes envahissants perceurs du phloème et du bois sont devenus d'importants ravageurs. Afin de faciliter les travaux d’échantillonnage et d'inventaire des arbres en rapport avec l'agrile du chêne Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae) récemment introduit, nous examinons la répartition spatiale des trous d'envol sur les troncs de 58 chênes verts côtiers de Californie, Quercus agrifolia Née (Fagaceae), dans cinq sites du comté de San Diego, dans le sud de la Californie, États-Unis d'Amérique. Les densités des trous d'envol d’Agrilus auroguttatus sont plus grandes au niveau du collet qu’à la mi-hauteur (6,1 m au-dessus du sol) du tronc. Les patrons de répartition des trous d'envol sur la partie inférieure du tronc (≤1,52 m) sont aléatoires chez les arbres à faible densité de trous d'envol et contagieux chez les arbres à forte densité de trous d'envol. La densité moyenne des trous d'envol mesurée dans trois quadrats (0,09 m2) choisis au hasard fournit une estimation statistiquement fiable de la véritable densité moyenne des trous d'envol sur le tronc inférieur avec <25% d'erreur par rapport à la moyenne véritable. Dans les travaux futurs d’échantillonnage et d'inventaire dans les forêts et les terrains boisés du sud de la Californie, on pourrait faire le dénombrement des trous d'envol dans un quadrat de 0,09 m2 à n'importe quels de trois sites sur des troncs inférieurs de Q. agrifolia afin d'estimer avec précision les densités des trous d'envols d’A. auroguttatus à l’échelle des arbres individuels.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akers, R.C.Nielsen, D.G. 1990. Spatial emergence pattern of bronze birch borer, (Coleoptera: Buprestidae) from European white birch. Journal of Entomological Science, 25: 150157.CrossRefGoogle Scholar
Aukema, J.E., McCullough, D.G., Von Holle, B., Liebhold, A.M., Britton, K., Frankel, S.J. 2010. Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience, 60: 886897. doi: 10.1525/bio.2010.60.11.5.CrossRefGoogle Scholar
Balch, R.E.Prebble, J.S. 1940. The bronze birch borer and its relation to the dying of birch in New Brunswick forests. The Forestry Chronicle, 16: 179201.CrossRefGoogle Scholar
Ball, J.Simmons, G. 1980. The relationship between bronze birch borer and birch dieback. Journal of Arboriculture, 6: 309314.Google Scholar
Brown, L.R.Eads, C.O. 1965. A technical study of insects affecting the oak tree in southern California. California Agricultural Experiment Station Bulletin, 810: 1106.Google Scholar
Church, B.M.Strickland, A.H. 1954. Sampling cabbage aphid populations on Brussels sprouts. Plant Pathology, 3: 7680.CrossRefGoogle Scholar
Coleman, T.W., Graves, A.D., Hoddle, M., Heath, Z., Chen, Y., Flint, M.L., et al. 2012a. Forest stand composition and impacts associated with Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae) and Agrilus coxalis Waterhouse in oak woodlands. Forest Ecology and Management, 276: 104117.CrossRefGoogle Scholar
Coleman, T.W., Grulke, N.E., Daly, M., Godinez, C., Schilling, S.L., Riggan, P.J., et al. 2011. Coast live oak, Quercus agrifolia, susceptibility and response to goldspotted oak borer, Agrilus auroguttatus, injury in southern California. Forest Ecology and Management, 261: 18521865. doi: 10.1016/j.foreco.2011.02.008.CrossRefGoogle Scholar
Coleman, T.W., Lopez, V., Rugman-Jones, P., Stouthamer, R., Seybold, S.J., Reardon, R., et al. 2012b. Can the destruction of California's oak woodlands be prevented? Potential for biological control of the goldspotted oak borer, Agrilus auroguttatus. BioControl, 57: 211225. doi: 10.1007/s10526-011-9404-4.CrossRefGoogle Scholar
Coleman, T.W.Seybold, S.J. 2008a. New pest in California: the goldspotted oak borer, Agrius coxalis Waterhouse. United States Department of Agriculture Forest Service, Pest Alert, R5-RP-022: 1–4.Google Scholar
Coleman, T.W.Seybold, S.J. 2008b. Previously unrecorded damage to oak, Quercus spp., in southern California by the goldspotted oak borer, Agrilus coxalis Waterhouse (Coleoptera: Buprestidae). The Pan-Pacific Entomologist, 84: 288300.CrossRefGoogle Scholar
Coleman, T.W.Seybold, S.J. 2011. Collection history and comparison of the interactions of the goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), with host oaks in Southern California and southeastern Arizona, U.S.A. The Coleopterists Bulletin, 65: 93108. doi: 10.1649/072.065.0224.CrossRefGoogle Scholar
Crook, D.J., Fierke, M.K., Mauromoustakos, A., Kinney, D.L., Stephen, F.M. 2007. Optimization of sampling methods for within-tree populations of red oak borer, Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae). Environmental Entomology, 36: 589594.CrossRefGoogle ScholarPubMed
Davis, P.M. 1994. Statistics for describing populations. In Handbook of sampling methods for arthropods in agriculture. Edited by L.P. Pedigo and G.D. Buntin. CRC Press, Ann Arbor, Michigan. pp. 3354.Google Scholar
Dodds, K.J., Gilmore, D.W., Seybold, S.J. 2010. Assessing the threat posed by indigenous exotics: a case study of two North American bark beetle species. Annals of the Entomological Society of America, 103: 3949.CrossRefGoogle Scholar
Fierke, M.K., Kelley, M.B., Stephen, F.M. 2007. Site and stand variables influencing red oak borer, Enaphalodes rufulus (Coleoptera: Cerambycidae), population densities and tree mortality. Forest Ecology and Management, 247: 227236.CrossRefGoogle Scholar
Fierke, M.K., Kinney, D.L., Salisbury, V.B., Crook, D.J., Stephen, F.M. 2005. A rapid estimation procedure for within-tree populations of red oak borer (Coleoptera: Cerambycidae). Forest Ecology and Management, 215: 163168. doi: 10.1016/j.foreco.2005.05.009.CrossRefGoogle Scholar
Fisher, W.S. 1928. A revision of the North American species of buprestid beetles belonging to the genus Agrilus. Smithsonian Institution, United States National Museum, Bulletin, 145: 1347.Google Scholar
Furniss, R.L.Carolin, V.M. 1977. Western forest insects. United States Department of Agriculture, Forest Service, Miscellaneous Publication, 1339: 1–655.Google Scholar
Haack, R.A.Benjamin, D.M. 1982. The biology and ecology of the twolined chestnut borer, Agrilus bilineatus (Coleoptera: Buprestidae), on oaks, Quercus spp., in Wisconsin. The Canadian Entomologist, 114: 385396.CrossRefGoogle Scholar
Hishinuma, S., Coleman, T.W., Flint, M.L., Seybold, S.J. 2011. Goldspotted oak borer field identification guide [online]. University of California Agriculture and Natural Resources, Statewide Integrated Pest Management Program. Available from http://www.ipm.ucdavis.edu/PDF/MISC/GSOB_field-identification-guide.pdf [accessed 31 May 2012].Google Scholar
Iwao, S. 1968. A new regression method for analyzing the aggregation pattern of animal populations. Researches on Population Ecology, 10: 120.CrossRefGoogle Scholar
John, P.W.M. 1971. Statistical design and analysis of experiments. The Macmillan Company, New York.Google Scholar
LaBonte, J.R., Mudge, A.D., Johnson, K.J.R. 2005. Nonindigenous woodboring Coleoptera (Cerambycidae, Curculionidae: Scolytinae) new to Oregon and Washington, 1999–2002: consequences of the intracontinental movement of raw wood products and solid wood packing materials. Proceedings of the Entomological Society of Washington, 107: 554564.Google Scholar
Lloyd, M. 1967. Mean crowding. The Journal of Animal Ecology, 36: 130.CrossRefGoogle Scholar
Loerch, C.R.Cameron, E.A. 1984. Within-tree distributions and seasonality of immature stages of the bronze birch borer, Agrilus anxius (Coleoptera: Buprestidae). The Canadian Entomologist, 116: 147152.CrossRefGoogle Scholar
Mattson, W.J., Niemela, P., Millers, I., Inguanzo, Y. 1994. Immigrant phytophagous insects on woody plants in the United States and Canada: an annotated list. United States Department of Agriculture Forest Service North Central Forest Experiment Station, GTR-NC-169: 1–32.Google Scholar
McCullough, D.G.Siegert, N.W. 2007. Estimating potential emerald ash borer (Coleoptera: Buprestidae) populations using ash inventory data. Journal of Economic Entomology, 100: 15771586.CrossRefGoogle ScholarPubMed
Nielsen, D.G. 1981. Studying the biology and control of borers attacking woody plants. Entomological Society of America Bulletin, 27: 251259.CrossRefGoogle Scholar
R Development Core Team. 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rabaglia, R.J.Williams, G.L. 2002. Two species of western North American Hylesinus Fabricius (Coleoptera: Scolytidae) new to the Eastern United States. Proceedings of the Entomological Society of Washington, 104: 10581060.Google Scholar
Shibata, E. 1984. Spatial distribution pattern of the Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae), on dead pine trees. Applied Entomology and Zoology, 19: 361366.CrossRefGoogle Scholar
Smitley, D., Davis, T., Rebek, E. 2008. Progression of ash canopy thinning and dieback outward from the initial infestation of emerald ash borer (Coleoptera: Buprestidae) in southeastern Michigan. Journal of Economic Entomology, 101: 16431650.CrossRefGoogle ScholarPubMed
Southwood, T.R.E. 1978. Ecological methods, 2nd ed. Chapman & Hall, New York.Google Scholar
Swiecki, T.J.Bernhardt, E.A. 2006. A field guide to insects and diseases of California oaks. United States Department of Agriculture Forest Service Pacific Southwest Research Station General Technical Report, PSW-GTR-197: 1–151.Google Scholar
Timms, L.L., Smith, S.M., de Groot, P. 2006. Patterns in the within-tree distribution of the emerald ash borer Agrilus planipennis (Fairmaire) in young, green-ash plantations of south-western Ontario, Canada. Agricultural and Forest Entomology, 8: 313321.CrossRefGoogle Scholar
Vansteenkiste, D., Tirry, L., Van Acker, J., Stevens, M. 2004. Predispositions and symptoms of Agrilus borer attack in declining oak trees. Annals of Forest Science, 61: 815823.CrossRefGoogle Scholar
Westcott, R.L. 2005. A new species of Chrysobothris Eschscholtz from Oregon and Washington, with notes on other Buprestidae (Coleoptera) occuring in the United States and Canada. Zootaxa, 1044: 115.CrossRefGoogle Scholar