Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T23:39:49.093Z Has data issue: false hasContentIssue false

AN EXAMINATION OF THE UTILITY OF THE PRECIPITIN TEST FOR EVALUATION OF ARTHROPOD PREDATOR–PREY RELATIONSHIPS

Published online by Cambridge University Press:  31 May 2012

James D. McIver
Affiliation:
Department of Biology, Idaho State University, Pocatello, Idaho 83209

Abstract

A serological technique, the precipitin test, was examined as a method for determining the feeding habits of the spider Pardosa sternalis Thorell (Araneae: Lycosidae). Radial immunodiffusion responses were significantly influenced by quantity of prey consumed, the time elapsed between spider feeding and serological analysis, and the temperature at which spiders were maintained after feeding. Maximum antigen detection time after feeding was 150–200 h for spiders fed varying quantities of prey and held at 25°C and over 400 h for those held at 4°C. Ouchterlony double diffusion tests indicated that although two congeneric prey species could be distinguished from one another, significant cross-reactivity between the two was observed. No such cross-reactivity occurred between more distantly related prey species. The feasibility for utilizing precipitin analyses in field studies of predator–prey relationships is discussed.

Résumé

Une méthode sérologique, le test de la précipitine, a été évaluée pour déterminer les habitudes alimentaires de l’araignée Pardosa sternalis Thorell (Araneae : Lycosidae). La détection en immunodiffusion radiale a été significativement affectée par la quantité de proie consommée, le temps écoulé entre la consommation par l’araignée et l’analyse sérologique, et la température à laquelle les araignées ont été gardées après la consommation. Le maximum de détection d’antigène se situait 150–200 heures après la consommation pour des araignées nourries de quantités variables de proie et gardées à 25°C, et plus de 400 heures après pour celles gardées à 4°C. Le test de double diffusion d’Ouchterlony a montré que bien que deux espèces congénériques de proies peuvent être distinguées l’une de l’autre, un degré notable de réactivité croisée entre les deux est observé. Aucune réactivité croisée n’a été observée entre des espèces de proies taxonomiquement plus distantes. Les possibilités d’utilisation des tests de précipitine dans le cadre d’études de terrain sur les relations prédateurs-proies sont commentées dans la discussion.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. F. 1970. Metabolic rates of spiders. Comp. Biochem. Physiol. 33: 5172.CrossRefGoogle ScholarPubMed
Boreham, P. F. L. and Ohiagu, C. E.. 1978. The use of serology in evaluating invertebrate prey–predator relationships: a review. Bull. ent. Res. 68: 171194.CrossRefGoogle Scholar
Clarke, R. D. and Grant, P. R.. 1968. An experimental study of the role of spiders as predators in a forest litter community. Part 1. Ecology 49: 11521154.CrossRefGoogle Scholar
Dempster, J. P. 1960. A quantitative study of the predators on the eggs and larvae of the broom beetle, Phytodecta olivacea Forster, using the precipitin test. J. Anim. Ecol. 29: 149167.CrossRefGoogle Scholar
Frank, J. H. 1967. A serological method used in the investigation of the predators of the pupal stage of the winter moth, Operophtera brumata (L.) (Hydriomenidae). Quaest. ent. 3: 95105.Google Scholar
Greenstone, M. H. 1977. A passive haemagglutination inhibition assay for the identification of stomach contents of invertebrate predators. J. appl. Ecol. 14: 457464.CrossRefGoogle Scholar
Hall, R. R. et al. 1953. Evaluation of insect predator-prey relationships by precipitin test studies. Mosquito News 13: 199204.Google Scholar
Hildrew, A. G. and Townsend, C. R.. 1976. The distribution of two predators and their prey in an iron rich stream. J. Anim. Ecol. 45: 4157.CrossRefGoogle Scholar
Kajak, A. et al. 1972. The influence of ants on the meadow invertebrates. Ekol. Polska 20: 163171.Google Scholar
Kiritani, K. and Dempster, J. P.. 1973. Different approaches to the quantitative evaluation of natural enemies. J. appl. Ecol. 10: 323330.Google Scholar
Loughton, B. G., Derry, C., and West, A. S.. 1963. Spiders and the spruce budworm, pp. 249–268 in Morris, R. F. (Ed.), The Dynamics of Epidemic Spruce Budworm Populations. Mem. ent. Soc. Can. 31. 332 pp.Google Scholar
Lund, R. D. and Turpin, F. T.. 1977. Serological investigation of black cutworm larval consumption by ground beetles. Ann. ent. Soc. Am. 70: 322324.CrossRefGoogle Scholar
Luscak, J. and Dabrowska-Prot, E.. 1966. Experimental studies on the reduction of the abundance of mosquitos by spiders. I. The intensity of spider predation on mosquitos. Bull. Acad. Pol. Sci. II. 14: 315320.Google Scholar
Mancini, G., Carbonara, A. O., and Heremans, J. F.. 1965. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2: 235254.CrossRefGoogle ScholarPubMed
Moulder, B. C. and Reichle, D. E.. 1972. Significance of spider predation in the energy dynamics of forest-floor arthropod communities. Ecol. Monogr. 42: 473498.CrossRefGoogle Scholar
Nicholson, A. J. 1957. The self-adjustment of populations to change. Cold Spring Harbor Symp. Quant. Biol. 22: 153173.CrossRefGoogle Scholar
Ouchterlony, O. 1958. Diffusion in gel methods for immunological analysis. Progr. Aller. 5: 177.Google ScholarPubMed
Pettersson, J. 1972. Technical description of a serological method for quantitative predator efficiency studies on Rhopalosiphum padi (L.). Swedish J. Agric. Res. 2: 6569.Google Scholar
Pimentel, D. and Wheeler, A. G.. 1973. Species and diversity of arthropods in the alfalfa community. Environ. Ent. 2: 659668.CrossRefGoogle Scholar
Pollard, E. 1969. The effect of removal of arthropod predators on an infestation of Brevicoryne brassicae on brussel sprouts. Entomologia exp. appl. 12: 118124.CrossRefGoogle Scholar
Salt, G. W. 1967. Predation in an experimental protozoan population. Ecol. Monogr. 37: 113114.CrossRefGoogle Scholar
Service, M. W. 1976. Mosquito ecology. Field sampling methods. London, Applied Science Publishers. 583 pp.Google Scholar
Turnbull, A. L. 1973. Ecology of the true spiders. A. Rev. Ent. 18: 305348.CrossRefGoogle Scholar
Vickerman, G. P. and Sutherland, K. D.. 1975. Arthropods in cereal crops: nocturnal activity, vertical distribution and aphid predation. J. appl. Ecol. 12: 755766.CrossRefGoogle Scholar
West, A. S. 1950. The precipitin test as an entomological tool. Can. Ent. 82: 241244.CrossRefGoogle Scholar
Zar, J. H. 1974. Biostatistical Analysis. Prentice Hall, New Jersey. 620 pp.Google Scholar