Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T18:05:54.976Z Has data issue: false hasContentIssue false

Antennae of Cryptorhynchus lapathi (Coleoptera: Curculionidae) detect two pheromone components of coniferophagous bark beetles in the stems of Salix sitchensis and Salix scouleriana (Salicaceae)

Published online by Cambridge University Press:  02 April 2012

Cynthia L. Broberg*
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
John H. Borden
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
Regine Gries
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
*
1Corresponding author (e-mail: cbroberg@sfu.ca).

Extract

Several scolytid beetles (Coleoptera: Scolytidae) produce conophthorin, (E)-7-methyl-1,6-dioxaspiro[4.5]decane, and use it as an aggregation or antiaggregation pheromone or competition-mediating synomone (Francke et al. 1979; Kohnle et al. 1992; Birgersson et al. 1995; Pierce et al. 1995; de Groot et al. 1998; Dallara et al. 2000; Rappaport et al. 2000). Predators or associates of these beetles may use conophthorin as a host- or habitat-finding kairomone (Kohnle et al. 1992). Other conifer-infesting scolytid and predator species use chalcogran, 2-ethyl-1,6-dioxaspiro[4.4]nonane, a semiochemical with functions similar to those of conophthorin (Francke et al. 1977; Heuer and Vité 1984; Baader 1989; Byers 1993; Byers et al. 1989, 2000).

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arn, H., Stadler, E., and Rauscher, S. 1975. The electroantennographic detector — a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Zeitschrift für Naturforschung C, 30: 722725.CrossRefGoogle Scholar
Baader, V.E.J. 1989. Pityogenes spp. (Col., Scolytidae): Untersuchungen über verhaltenssteuernde Duftstoffe und deren Anwendung im Waldschutz. Journal of Applied Entomology, 107: 131. [Abstract.]CrossRefGoogle Scholar
Birgersson, G., DeBarr, G., de Groot, P., Dalusky, M.J., Pierce, H.D. Jr., Borden, J.H. et al. 1995. Pheromones in white pine cone beetle, Conophthorus coniperda (Schwarz) (Coleoptera: Scolytidae). Journal of Chemical Ecology, 21: 143167.CrossRefGoogle ScholarPubMed
Byers, J.A. 1993. Avoidance of competition by spruce bark beetles, Ips typographus and Pityogenes chalcographus. Experientia, 49: 272275.CrossRefGoogle Scholar
Byers, J.A., Zhang, Q.-H., and Birgersson, G. 2000. Strategies of a bark beetle, Pityogenes bidentatus, in an olfactory landscape. Naturwissenschaften, 87: 504507.CrossRefGoogle Scholar
Byers, J.A., Zhang, Q.-H., Schlyter, F., and Birgersson, G. 1998. Volatiles from nonhost birch trees inhibit pheromone response in spruce bark beetles. Naturwissenschaften, 85: 557561.CrossRefGoogle Scholar
Byers, J.A., Hoegberg, H.E., Unelius, R.G., and Löfqvist, J. 1989. Structure–activity studies on aggregation pheromone components of Pityogenes chalcographus (Coleoptera: Scolytidae): all stereoisomers of chalcogran and methyl 2,4 decadienoate. Journal of Chemical Ecology, 15: 685695.CrossRefGoogle Scholar
Byrne, K.J., Gore, W.E., Pearce, G.T., and Silverstein, R.M. 1975. Porapak-Q collection of airborne organic compounds serving as models for insect pheromones. Journal of Chemical Ecology, 1: 17.CrossRefGoogle Scholar
Dallara, P.L., Seybold, S.J., Meyer, H., Tolasch, T., Francke, W., and Wood, D.L. 2000. Semiochemicals from three species of Pityophthorus (Coleoptera: Scolytidae): identification and field response. The Canadian Entomologist, 132: 889906.CrossRefGoogle Scholar
de Groot, P., DeBarr, G., and Birgersson, G. 1998. Field bioassays of synthetic pheromones and host monoterpenes for Conophthorus coniperda (Coleoptera: Scolytidae). Environmental Entomology, 27: 382387.CrossRefGoogle Scholar
Francke, W., Hindorf, G., and Reith, W. 1979. Alkyl 1,6-dioxaspiro[4.5]decanes — a new class of pheromones. Naturwissenschaften, 66: 618619.CrossRefGoogle Scholar
Francke, W., Heemann, V., Gerken, B., Renwick, J.A.A., and Vité, J.P. 1977. 2-Ethyl-1,6-dioxaspire[4.4]nonane, principal aggregation pheromone of Pityogenes chalcographus (L.). Naturwissenschaften, 64: 590591.CrossRefGoogle Scholar
Francke, W., Bartels, J., Meyer, H., Schröder, F., Kohnle, U., Baader, E., and Vité, J.P. 1995. Semiochemicals from bark beetles: new results, remarks and reflections. Journal of Chemical Ecology, 21: 10431063.CrossRefGoogle ScholarPubMed
Heuer, H.G., and Vité, J.P. 1984. Chalcogran: unique kairomone-governed predator–prey relations among ostomid and scolytid beetles. Naturwissenschaften, 71: 214215.CrossRefGoogle Scholar
Huber, D.P.W., Gries, R., Borden, J.H., and Pierce, H.D. Jr., 1999. Two pheromones of coniferophagous bark beetles found in the bark of nonhost angiosperms. Journal of Chemical Ecology, 25: 805816.CrossRefGoogle Scholar
Kaiser, R. 1991. Trapping, investigation and reconstitution of flower scents. In Perfumes: art, science, and technology. Edited by Müller, P.M. and Lamparsky, D.. Elsevier, New York. pp. 213250.Google Scholar
Kaiser, R. 1993. The scent of orchids. Elsevier, New York.CrossRefGoogle Scholar
Kohnle, U., Densborn, S., Kölsch, P., Meyer, H., and Francke, W. 1992. E-7-methyl-1,6-dioxaspiro [4.5]decane in the chemical communication of European Scolytidae and Nitidulidae (Coleoptera). Journal of Applied Entomology, 114: 187192.CrossRefGoogle Scholar
Morewood, W.D., Simmonds, K.E., Gries, R., Allison, J.D., and Borden, J.H. 2003. Disruption by conophthorin of the kairomonal response of sawyer beetles to bark beetle pheromones. Journal of Chemical Ecology, 29: 21152129.CrossRefGoogle ScholarPubMed
Pierce, H.D. Jr., de Groot, P., Borden, J.H., Ramaswamy, S., and Oehlschlager, A.C. 1995. Pheromones in red pine cone beetle, Conophthorus resinosae Hopkins, and its synonym, C. banksianae McPherson (Coleoptera: Scolytidae). Journal of Chemical Ecology, 21: 169185.CrossRefGoogle ScholarPubMed
Rappaport, N.G., Stein, J.D., del Rio Mora, A.A., DeBarr, G., de Groot, P., and Mori, S. 2000. Responses of Conophthorus spp. (Coleoptera: Scolytidae) to behavioral chemicals in field trials: a transcontinental perspective. The Canadian Entomologist, 132: 925937.CrossRefGoogle Scholar
Rudinsky, J.A. 1974. Additional components of the Douglas-fir beetle (Coleoptera: Scolytidae) aggregative pheromone and their utility in pest control. Zeitschrift Angewandte Entomologie, 76: 6567.CrossRefGoogle Scholar
Zhang, Q.-H., and Schlyter, F. 2003. Redundancy, synergism, and active inhibitory range of non-host volatiles in reducing pheromone attraction in European spruce bark beetle Ips typographus. Oikos, 101: 299310.CrossRefGoogle Scholar
Zhang, Q.-H, Liu, G.-T., Schlyter, F., Birgersson, G., Anderson, P., and Valeur, P. 2001. Olfactory responses of Ips duplicatus from Inner Mongolia, China to nonhost leaf and bark volatiles. Journal of Chemical Ecology, 27: 9951009.CrossRefGoogle ScholarPubMed