Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T00:17:15.452Z Has data issue: false hasContentIssue false

ANTIFEEDANT AND GROWTH INHIBITORY EFFECTS OF TALL OIL AND DERIVATIVES AGAINST THE VARIEGATED CUTWORM, PERIDROMA SAUCIA HÜBNER (LEPIDOPTERA: NOCTUIDAE)

Published online by Cambridge University Press:  31 May 2012

Yongshou Xie
Affiliation:
Department of Plant Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA
Murray B. Isman*
Affiliation:
Department of Plant Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA
*
1 Author to whom all correspondence should be addressed.

Abstract

Crude tall oil and two of its derivatives were assessed for antifeedant and growth inhibitory effects, via incorporation into an artificial diet, in the variegated cutworm (Peridroma saucia Hübner). The substances tested are both toxic to neonate P. saucia and inhibitory to larval growth. The dietary LC50 (lethal concentration for 50% mortality) values are 4.3, 4.7, and 5.3% fresh weight for depitched tall oil (DTO), crude tall oil (CTO), and tall oil pitch (TOP), respectively. These materials significantly reduced growth, feeding, and dietary utilization by first-, second-, third-, and fourth-instar larvae in chronic larval growth bioassays, choice and no-choice feeding tests, and nutritional experiments. The EC50s (effective concentration to inhibit growth by 50% relative to controls) of DTO, CTO, and TOP were 1.4, 2.0, and ≥2.4%, respectively, when first-instar larvae fed on treated diets for 10 days. DTO significantly reduced both growth and consumption rates with corresponding reduction in the efficiency of conversion of food (i.e. nutritional efficiency), suggesting that both antifeedant and toxic effects are involved in larval growth inhibition. DTO and CTO are consistently more biologically active than TOP. Our results suggest that an environmentally sound, low cost natural pest control agent may be developed based on tall oil.

Résumé

Les effets inhibiteurs de la résine liquide brute et de deux de ses dérivés sur la croissance et l’alimentation du Ver-gris panaché (Peridroma saucia Hübner) ont été mesurés après incorporation de ces produits dans une diète artificielle. Les substances utilisées sont toxiques pour les P. saucia néonates et elles inhibent la croissance larvaire. Les doses LC50 (concentrations létales pour 50% de la population) ont été évaluées à 4,3% de la masse fraîche dans le cas de la résine liquide sans goudron (DTO), à 4,7% de la masse fraîche dans le cas de la résine liquide brute (CTO), et à 5,3% de la masse fraîche dans le cas du goudron extrait de la résine liquide (TOP). Ces substances ont inhibé significativement la croissance, l’alimentation et l’utilisation métabolique chez les larves de premier, deuxième, troisième et quatrième stades au cours d’expériences chroniques sur la croissance larvaire, au cours de tests alimentaires avec et sans choix et au cours d’expériences sur la nutrition. Les concentrations EC50 (concentrations suffisantes pour inhiber 50% de la croissance telle qu’elle prévaut chez des individus témoins) de DTO, CTO et TOP se sont avérées respectivement de 1,4, 2,0 et ≥2,4% lorsque des larves de premier stade ont été soumises à une diète expérimentale pendant 10 jours. La substance DTO diminuait significativement les taux de croissance et de consommation de nourriture et il s’ensuivait une diminution de l’efficacité de la conversion métabolique (i.e. efficacité métabolique), ce qui semble indiquer que des effets toxiques et des effets inhibiteurs de l’alimentation sont responsables de l’inhibition de la croissance larvaire. Les substances DTO et CTO sont toujours plus actives biologiquement que la substance TPO. Nos résultats indiquent qu’il est probablement possible de synthétiser un agent de contrôle naturel, peu coûteux et sans effet nuisible sur l’environnement, à partir de la résine liquide. [Traduit par la réduction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Anonymous. 1991. Statistix (3.5) User's Manual. Analytical Software, St. Paul, MN. 308 pp.Google Scholar
Arnason, J.T., Philogène, B.J.R., and Morand, P. (Eds.). 1989. Insecticides of Plant Origin. American Chemical Society Symposium Series 387. Washington, DC. 213 pp.Google Scholar
Barton, G.M., MacDonald, B.F., and Sahota, T.S.. 1972. Juvenile hormone-like activity of thujic acid, an extractive of western red cedar. Canadian Forestry Service Bi-monthly Research Notes 28: 2223.Google Scholar
Bowers, W.S. 1985. Phytochemical disruption of insect development and behaviour. pp. 225–236 in Hedin, P.A. (Ed.), Bioregulators for Pest Control. American Chemical Society Symposium Series 276. Washington, DC. 540 pp.Google Scholar
Cousin, M.J. 1989. Tall oil neutrals to protect plants from insects and the like. U.S. Patent. Patent No. 4874610. 12 pp.Google Scholar
Domanski, J.W. 1989. Toxicology. pp. 895–941 in Zinkel, D.F., and Russell, J. (Eds.), Naval Stores: Production, Chemistry, Utilization. Pulp Chemical Association, New York, NY. 1060 pp.Google Scholar
Elliger, C.A., Zinkel, D.F., Chan, B.G., and Waiss, A.C. Jr, 1976. Diterpene acids as larval growth inhibitors. Experientia 32: 13641366.CrossRefGoogle ScholarPubMed
Farrar, R.R. Jr, Barbour, J.D., and Kennedy, G.G.. 1989. Quantifying food consumption and growth in insects. Annals of the Entomological Society of America 82: 593598.CrossRefGoogle Scholar
Farrar, R.R. Jr and Kennedy, G.G.. 1987. Growth, food consumption and mortality of Heliothis zea larvae on foliage of the wild tomato Lycopersicon hirsutum and the cultivated tomato L. esculentum. Entomologia Experimentalis et Applicata 44: 213219.CrossRefGoogle Scholar
Finney, J. 1990. Where do we stand? where do we go? in World Crop Protection Prospects. Seventh International Conference of Pesticide Chemistry. Hamburg, W. Germany. 26 pp.Google Scholar
Isman, M.B., Koul, O., Arnason, J.T., Stewart, J., and Salloum, G.S.. 1991. Developing a neem-based insecticide for Canada. pp. 39–47 in Arnason, J.T., and Philogène, B.J.R. (Eds.), Symposium on the Role of Plant-derived Substances for Insect Control. Memoirs of the Entomological Society of Canada 159: 47 pp.Google Scholar
Isman, M.B., Koul, O., Luczynski, A., and Kaminski, J.. 1990. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. Journal of Agricultural and Food Chemistry 38: 10461411.CrossRefGoogle Scholar
Isman, M.B., Proksch, P., and Yan, J.. 1987. Insecticidal chromenes from the Asteraceae: Structure–activity relations. Entomologia Experimentalis et Applicata 43: 8793.Google Scholar
Isman, M.B., and Rodriguez, E.. 1983. Larval growth inhibitors from species of Parthenium (Asteraceae). Phytochemistry 22: 27092713.CrossRefGoogle Scholar
Kabara, J.J. 1986. Fatty acids and esters as antimicrobial/insecticidal agents. pp. 220–238 in Fuller, G., and Nes, W.D. (Eds.), Ecology and Metabolism of Plant Lipids. American Chemical Society Symposium Series 325. Washington, DC. 374 pp.Google Scholar
Kieslich, K. 1976. Microbial Transformation of Non-steroid Cyclic Compounds. John Wiley & Sons, New York, NY. 1266 pp.Google Scholar
Lugemwa, F.N., Huang, F.Y., Bentley, M.D., Mendel, M.J., and Alford, A.R.. 1990. A Heliothis zea antifeedant from the abundant birchbark triterpene betulin. Journal of Agricultural and Food Chemistry 38: 493496.CrossRefGoogle Scholar
Manuwoto, S., and Scriber, J.M.. 1982. Consumption and utilization of three maize genotypes by the southern armyworm. Journal of Economic Entomology 75: 163167.CrossRefGoogle Scholar
SAS Institute. 1982. SAS User's Guide: Statistics. SAS Institute, Cary, NC. 584 pp.Google Scholar
Schoonhoven, L.M. 1982. Biological aspects of antifeedants. Entomologia Experimentalis et Applicata 31: 5769.CrossRefGoogle Scholar
Schuh, B.A., and Benjamin, D.M.. 1984. Evaluation of commercial resin acids as feeding deterrents against Neodiprion dubiosus, N. lecontei, and N. rugifrons (Hymenoptera: Diprionidae). Journal of Economic Entomology 77: 802805.CrossRefGoogle Scholar
Servizi, J.A., Martens, D.W., Gordon, R.W., Kutney, J.P., Singh, M., Dimitriadis, E., Hewitt, G.M., Salisbury, P.J., and Choi, L.S.L.. 1986. Microbiological detoxification of resin acids. Water Pollution Research Journal of Canada 21: 119129.Google Scholar
van Beek, T.A., and de Groot, A.. 1986. Terpenoid antifeedants, part I. An overview of terpenoid antifeedants of natural origin. Recueil des Travaux Chimiques des Pays-Bas 105: 513527.CrossRefGoogle Scholar
Wagner, M.R., Benjamin, D.M., Clancy, K.M., and Schuh, B.A.. 1983. Influence of diterpene resin acids on feeding and growth of larch sawfly, Pristiphora erichsonii (Hartig). Journal of Chemical Ecology 9: 119127.CrossRefGoogle ScholarPubMed