Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T17:49:08.339Z Has data issue: false hasContentIssue false

Antixenosis and antibiosis resistance to Ceutorhynchus obstrictus in novel germplasm derived from Sinapis alba x Brassica napus

Published online by Cambridge University Press:  02 April 2012

James A. Tansey*
Affiliation:
Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
Lloyd M. Dosdall
Affiliation:
Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
Andrew Keddie
Affiliation:
Department of Biological Sciences, CW 405 Biological Sciences Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
Ron S. Fletcher
Affiliation:
Department of Plant Agriculture, 50 Stone Road East, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Laima S. Kott
Affiliation:
Department of Plant Agriculture, 50 Stone Road East, University of Guelph, Guelph, Ontario, Canada N1G 2W1
*
1 Corresponding author (e-mail: jtansey@ualberta.ca).

Abstract

Introgression of cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), resistance from Sinapis alba L. to susceptible Brassica napus L. (Brassicaceae) has produced genetic lines resistant to the weevil in replicated field trials. In the current study, weevil feeding and oviposition on S. alba and on resistant novel lines developed by crossing S. alba × B. napus were less frequent than on susceptible germplasm. Development times were greater and biomass was less when larvae were reared on resistant lines or S. alba. Oocyte development was faster in post-diapause springtime adult female weevils caged on susceptible plants than in those on a resistant line, S. alba, or an early-season food host, Thlaspi arvense L (Brassicaceae). Our results suggest that antixenosis resistance and antibiosis resistance are expressed by resistant lines. These results and previous chemical analyses of these lines also suggest that resistance is potentially influenced by attractive and (or) feeding-stimulant effects of 2-phenylethyl glucosinolate and antifeedant or toxic effects of 1-methoxy-3-indolylmethyl glucosinolate.

Résumé

L’introgression de la résistance au charançon de la graine de chou, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), de Sinapis alba L. à l'espèce susceptible Brassica napus L. (Brassicaceae) a produit des lignées génétiques résistantes au charançon dans des essais répétés en nature. Dans la présente étude, l'alimentation et la ponte du charançon sur S. alba et sur les nouvelles lignées résistantes produites par S. alba × B. napus sont inférieures à ce qu’elles sont sur le germoplasme susceptible. La durée du développement est supérieure et la masse des larves inférieure dans les élevages faits sur les lignées résistantes et sur S. alba. Le développement des oocytes est plus important lorsque des charançons femelles du printemps après la diapause sont gardés en cage sur des plants susceptibles que sur une lignée résistante, sur S. alba, ou sur un hôte alimentaire de début de saison, Thlaspi arvense L. (Brassicaceae). Nos résultats indiquent que les lignées résistantes manifestent de la résistance de type antixénose et antibiose. Nos données et des analyses chimiques antérieures de ces lignées laissent aussi croire que la résistance est influencée par les effets potentiels d'attraction et (ou) de stimulation alimentaire du glucosinolate de 2-phényléthyle et des effets potentiels antiappétants/toxiques du glucosinolate de 1-méthoxy-3-indolylméthyle.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bodnaryk, R.P. 1991. Developmental profile of sinalbin (p-hydroxybenzyl glucosinolate) in mustard seedlings, Sinapis alba L., and its relationship to insect resistance. Journal of Chemical Ecology, 17: 15431556. doi:10.1007/BF00984687.CrossRefGoogle ScholarPubMed
Bodnaryk, R.P. 1992. Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry, 31: 26712677. doi:10.1016/0031-9422(92)83609-3.CrossRefGoogle Scholar
Bonnemaison, L. 1957. Le charançon des siliques (Ceutorhynchus assimilis Payk.). Biologie et méthode de lutte. Annales Épiphytes, 4: 387543.Google Scholar
Borror, D.J., De Long, D.M., and Triplehorn, C.A. 1981. An introduction to the study of insects. 5th ed. Saunders College Publishing, Philadelphia, Pennsylvania.Google Scholar
Cárcamo, H.A., Dunn, R., Dosdall, L.M., and Olfert, O. 2007. Managing cabbage seedpod weevil in canola using a trap crop — a commercial field-scale study in western Canada. Crop Protection, 26: 13251334. doi:10.1016/j.cropro.2006.11.007.CrossRefGoogle Scholar
Cook, S.M., Smart, L.E., Martin, J.L., Murray, D.A., Watts, N.P., and Williams, I.H. 2006. Exploitation of host plant preferences in pest management strategies for oilseed rape (Brassica napus). Entomologia Experimentalis et Applicata, 119: 221229. doi:10.1111/j.1570-7458.2006.00419.x.CrossRefGoogle Scholar
Dickens, J.C., and Moorman, E.E. 1990. Maturation and maintenance of electroantennogram responses to pheromone and host odors in boll weevils fed their host plant or an artificial diet. Zeitschrift für Angewandte Entomologie, 109: 470480.Google Scholar
Dmoch, J. 1965. The dynamics of a population of the cabbage seedpod weevil (Ceutorhynchus assimilis Payk.) and the development of winter rape. Part I. Ekologia Polska Seria A, 13: 249287.Google Scholar
Dosdall, L.M., and Kott, L.S. 2006. Introgression of resistance to cabbage seedpod weevil to canola from yellow mustard. Crop Science, 46: 24372445. doi:10.2135/cropsci2006.02.0132.CrossRefGoogle Scholar
Dosdall, L.M., and Moisey, D.W.A. 2004. Developmental biology of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Coleoptera: Curculionidae), in spring canola, Brassica napus, in western Canada. Annals of the Entomological Society of America, 97: 458465. doi:10.1603/0013-8746(2004)097[0458:DBOTCS]2.0.CO;2.CrossRefGoogle Scholar
Dosdall, L.M., Herbut, M.J., Cowle, N.T., and Micklich, T.M. 1996. The effect of tillage regime on emergence of root maggots (Delia spp.) (Diptera: Anthomyiidae) from canola. The Canadian Entomologist, 128: 11571165. doi:10.4039/Ent1281157-6.CrossRefGoogle Scholar
Dosdall, L.M., Moisey, D., Cárcamo, H., and Dunn, R. 2001. Cabbage seedpod weevil factsheet. Alberta Agriculture, Food and Rural Development, Agdex No. 4. pp. 622624.Google Scholar
Doucette, C.F. 1947. Host plants of the cabbage seedpod weevil. Journal of Economic Entomology, 40: 838840. PMID:18858098.CrossRefGoogle ScholarPubMed
Fox, A.S., and Dosdall, L.M. 2003. Reproductive biology of Ceutorhynchus obstrictus (Coleoptera: Curculionidae) on wild and cultivated Brassicaceae in southern Alberta. Journal of Entomological Science, 38: 533544.CrossRefGoogle Scholar
Gols, R., Wagenaar, R., Bukovinszky, T., van Dam, N.M., Dicke, M., Bullock, J.M., and Harvey, J.A. 2008. Genetic variation in defense chemistry in wild cabbages affects herbivores and their endoparasitoids. Ecology, 89: 16161626. PMID:18589526 doi:10.1890/07-0873.1.CrossRefGoogle ScholarPubMed
Harmon, B.L., and McCaffrey, J.P. 1997. Laboratory bioassay to assess Brassica spp. germplasm for resistance to the cabbage seedpod weevil (Coleoptera Curculionidae). Journal of Economic Entomology, 90: 13921399.CrossRefGoogle Scholar
Harwood, L.M., and Moody, C.J. 1989. Experimental organic chemistry: principles and practice. Blackwell Scientific, Oxford, United Kingdom.Google Scholar
Hill, D.S. 1987. Agricultural insect pests of temperate regions and their control. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Kalischuk, A.R., and Dosdall, L.M. 2004. Susceptibilities of seven Brassicaceae species to infestation by the cabbage seedpod weevil (Coleoptera: Curculionidae). The Canadian Entomologist, 136: 265276. doi:10.4039/N03-058.CrossRefGoogle Scholar
Kogan, M., and Ortman, E.F. 1978. Antixenosis — a new term proposed to define Painter's ‘non preference’ modality of resistance. Bulletin of the Entomological Society of America, 24: 175176.CrossRefGoogle Scholar
Lim, J.H., Kim, H.W., Jeon, J.H., and Lee, H.S. 2008. Acaricidal constituents isolated from Sinapis alba L. seeds and structure–activity relationships. Journal of Agricultural and Food Chemistry, 56: 99629966. PMID:18844359 doi:10.1021/jf8022244.CrossRefGoogle ScholarPubMed
McCaffrey, J. P. 1992. Review of the U.S. canola pest complex: cabbage seedpod weevil. In Proceedings of the 1992 U.S. Canola Conference, Memphis, Tennessee, 526 March 1992. American Pedigreed Seed Company, Memphis, Tennessee. pp. 140143.Google Scholar
McCaffrey, J.P., Harmon, B.L., Brown, J., Brown, A.P., and Davis, J.B. 1999. Assessment of Sinapis alba, Brassica napus and S. alba × B. napus hybrids for resistance to cabbage seedpod weevil, Ceutorhynchus assimilis (Coleoptera: Curculionidae). Journal of Agricultural Science, 132: 289295. doi:10.1017/S0021859699006425.CrossRefGoogle Scholar
McCloskey, C., and Isman, M.B. 1993. Influence of foliar glucosinolates in oilseed rape and mustard on feeding and growth of the bertha armyworm, Mamestra configurata Walker. Journal of Chemical Ecology, 19: 249266. doi:10.1007/BF00993693.CrossRefGoogle ScholarPubMed
Mewis, I., Ulrichs, C., and Schnitzler, W.H. 2002. Possible role of glucosinolates and their hydrolysis products in oviposition and host-plant finding by cabbage webworm, Hellula undalis. Entomologia Experimentalis et Applicata, 105: 129139. doi:10.1046/j.1570-7458.2002.01041.x.CrossRefGoogle Scholar
Miller, J.R., and Cowles, R.S. 1990. Stimulodeterrent diversion: a concept and its possible application to onion maggot control. Journal of Chemical Ecology 16: 31973212. doi:10.1007/BF00979619.CrossRefGoogle ScholarPubMed
Mithen, R. 1992. Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape. Euphytica, 63: 7183. doi:10.1007/BF00023913.CrossRefGoogle Scholar
Ni, X.Z., McCaffrey, J.P., Stoltz, R.L., and Harmon, B.L. 1990. Effects of postdiapause adult diet and temperature on oogenesis of the cabbage seedpod weevil (Coleoptera: Curculionidae). Journal of Economic Entomology, 83: 22462251.CrossRefGoogle Scholar
Painter, R.H. 1951. Insect resistance in crop plants. University of Kansas, Lawrence, Kansas.CrossRefGoogle Scholar
Palaniswamy, P., Lamb, R.J., and Bodnaryk, R.P. 1997. Antibiosis of preferred and non-preferred host-plants for the flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). The Canadian Entomologist, 129: 4349. doi:10.4039/Ent12943-1.CrossRefGoogle Scholar
SAS Institute Inc. 2005. SAS. Version 9.1. SAS Institute Inc., Cary North, Carolina.Google Scholar
Schoonhoven, L.M. 1969. Sensitivity changes in some insect chemoreceptors and their effect on food selection behavior. Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam C, 72: 491498.Google Scholar
Shaw, E. 2008. The detection of biochemical markers for cabbage seedpod weevil (Ceutorhynchus obstrictus) resistance in Brassica napus L. × Sinapis alba L. germplasm. M.Sc. thesis, University of Guelph, Guelph, Ontario.CrossRefGoogle Scholar
Shaw, E.J., Fletcher, R.S., Dosdall, L.L. [sic], and Kott, L.S. 2009. Biochemical markers for cabbage seedpod weevil (Ceutorhynchus obstrictus (Marsham)) resistance in canola (Brassica napus L.). Euphytica, 170: 297308. doi:10.1007/s10681-009-9980-x.CrossRefGoogle Scholar
Smart, L.E., and Blight, M.M. 1997. Field discrimination of oilseed rape, Brassica napus volatiles by cabbage seed weevil, Ceutorhynchus assimilis. Journal of Chemical Ecology, 23: 25552567. doi:10.1023/B:JOEC.0000006666.77111.ab.CrossRefGoogle Scholar
Tanaka, K., and Ito, Y. 1982. Decrease in respiratory rate on a spider, Pardosa astigera (Koch), under starvation. Research in Population Ecology, 24: 360374. doi:10.1007/BF02515582.CrossRefGoogle Scholar
Tansey, J.A. 2009. Mechanisms of cabbage seedpod weevil, Ceutorhynchus obstrictus, resistance associated with novel germplasm derived from Sinapis alba × Brassica napus. Ph.D. thesis, University of Alberta, Edmonton, Alberta.Google Scholar
Tansey, J.A., Dosdall, L.M., Keddie, B.A., and Noble, S.D. 2010. Contributions of visual cues to cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), resistance in novel host genotypes. Crop Protection, 29: 276481. doi:10.1016/j.cropro.2009.11.005.CrossRefGoogle Scholar
Tansey, J.A., Dosdall, L.M., Keddie, B.A., Fletcher, R.S., and Kott, L.S. 2010. Responses of Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae) to olfactory cues associated with novel genotypes developed by Sinapis alba L. × Brassica napus L.. Arthropod—Plant Interactions, 4: 95106. doi:10.1007/s11829-010-9087-2.CrossRefGoogle Scholar
Ulmer, B.J., and Dosdall, L.M. 2006 a. Glucosinolate profile and oviposition behaviour in relation to the susceptibilities of different Brassicaceae to the cabbage seedpod weevil. Entomologia Experimentalis et Applicata, 121: 203213. doi:10.1111/j.1570-8703.2006.00480.x.CrossRefGoogle Scholar
Ulmer, B.J., and Dosdall, L.M. 2006 b. Spring emergence biology of the cabbage seedpod weevil (Coleoptera: Curculionidae). Annals of the Entomological Society of America, 99: 6469. doi:10.1603/0013-8746(2006)099[0064:SEBOTC]2.0.CO;2.CrossRefGoogle Scholar