Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T17:56:03.422Z Has data issue: false hasContentIssue false

Assemblage of Hymenoptera arriving at logs colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its microbial symbionts in western Montana

Published online by Cambridge University Press:  02 April 2012

Celia K. Boone
Affiliation:
Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706, United States of America
Diana L. Six
Affiliation:
Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, United States of America
Steven J. Krauth
Affiliation:
Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706, United States of America
Kenneth F. Raffa*
Affiliation:
Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706, United States of America
*
1Corresponding author (e-mail: raffa@entomology.wisc.edu).

Abstract

Colonization of a tree by bark beetles and their symbionts creates a new habitat for a diverse assemblage of arthropods, including competing herbivores, xylophages, fungivores, saprophages, predators, and parasitoids. Understanding these assemblages is important for evaluating nontarget effects of various management tactics and for subsequently evaluating how changes in climate, the presence of invasive species, and altered forestry practices and land-use tenure may affect biodiversity. We characterized the assemblage of hymenopterans attracted to logs of ponderosa pine (Pinus ponderosa C. Lawson (Pinaceae)) colonized by the bark beetle Ips pini (Say) and its microbial symbionts. In one experiment, the composition and relative abundances of species arriving at hosts colonized by I. pini, and possible sources of attraction, were determined. Treatments consisted of a log containing I. pini with its natural complement of microorganisms, a log alone, and a blank control. A second experiment was carried out to determine whether or not Hymenoptera were attracted to microbial symbionts of I. pini. Treatments consisted of a blank control, a log alone, a log containing I. pini with its natural complement of microorganisms, either Ophiostoma ips, Burkholderia sp., or Pichia scolyti, and a log inoculated with a combination of these three microorganisms. Over 2 years, 5163 Hymenoptera were captured, of which over 98% were parasitoids. Braconidae, Platygastridae, Encyrtidae, Pteromalidae, and Ichneumonidae were the most abundant. Seven known species of bark beetle parasitoids (all Pteromalidae) were captured. However, parasitoids of Diptera, Lepidoptera, Hymenoptera, and non-wood-boring Coleoptera were also common. Nineteen species showed preferential attraction to host plants infested with I. pini and its complement of microorganisms, host plants inoculated with I. pini microbial symbionts, or host plants alone. Interestingly, many of these species were parasitoids of phytophagous, fungivorous, and saprophytic insects rather than of bark beetles themselves. These results suggest that a diverse assemblage of natural enemies that attack various feeding guilds within a common habitat exploit common olfactory cues.

Résumé

La colonisation d'un arbre par les scolytes et leurs symbiontes crée un nouvel habitat pour divers peuplements d'arthropodes, en particulier des herbivores compétiteurs, des xylophages, des mycétophages, des saprophages, des prédateurs et des parasitoïdes. Il est important de comprendre ces peuplements pour pouvoir évaluer les effets non ciblés des diverses tactiques de gestion et pour ensuite déterminer de quelle manière le changement climatique, la présence d' espèces envahissantes, ainsi que les changements dans les pratiques forestières et l'utilisation des terres, peuvent affecter la biodiversité. Nous décrivons le peuplement d'hyménoptères attirés par les troncs de pin ponderosa (Pinus ponderosa C. Lawson (Pinaceae)) colonisés par le scolyte du pin, Ips pini (Say) et ses symbiontes microbiens. Une première expérience cherchait à déterminer la composition et les abondances relatives des espèces qui se posaient sur les hôtes colonisés par I. pini et d'identifier les sources d'attraction. Les conditions expérimentales comprenaient un tronc habité par I. pini et son complément naturel de microorganismes, un tronc seul et un témoin à blanc. Une seconde expérience a été menée pour déterminer si les hyménoptères étaient attirés par les symbiontes microbiens d'I. pini. Les conditions expérimentales comprenaient un témoin à blanc, un tronc seul, un tronc avec I. pini et son complément naturel de microorganismes, soit Ophiostoma ips, Burkholderia sp. ou Pichia scolyti, et un tronc inoculé avec une combinaison de ces trois microorganismes. Sur deux années, nous avons capturé 5163 hyménoptères dont plus de 98 % étaient des parasitoïdes. Les plus abondants étaient les Braconidae, les Platygastridae, les Encyrtidae, les Pteromalidae et les Ichneumonidae. Nous avons capturé sept espèces connues pour être des parasitoïdes de scolytes (tous des Pteromalidae). Cependant, il y avait aussi en abondance des parasitoïdes de diptères, de lépidoptères, d'hyménoptères et de coléoptères non mineurs de bois. Dix-neuf espèces montraient une attraction préférentielle, par ordre, pour les plantes hôtes infestées par I. pini et son complément de microbes, puis les plantes hôtes inoculées des symbiontes microbiens d'I. pini et enfin les plantes hôtes seules. Remarquablement, plusieurs de ces espèces étaient des parasitoïdes des insectes phytophages, mycétophages et saprophytes, plutôt que des scolytes eux-mêmes. Ces résultats laissent croire que des regroupements divers d'ennemis naturels qui attaquent les différentes guildes alimentaires dans un même habitat utilisent des signaux olfactifs communs.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, A.S., and Six, D.L. 2008. Detection of host habitat by parasitoids using cues associated with mycangial fungi of the mountain pine beetle, Dendroctonus ponderosae. The Canadian Entomologist, 140: 124127.CrossRefGoogle Scholar
Amman, G.D. 1984. Mountain pine beetle (Coleoptera: Scolytidae) mortality in three types of infestations. Environmental Entomology, 13: 184191.CrossRefGoogle Scholar
Aukema, B.H., Richards, G.R., Krauth, S.J., and Raffa, K.F. 2004. Species assemblage arriving at and emerging from trees colonized by Ips pini in the Great Lakes region: partitioning by time since colonization, season, and host species. Annals of the Entomological Society of America, 97: 117129.CrossRefGoogle Scholar
Barras, S.J. 1975. Release of fungi from mycangia of southern pine beetles observed under a scanning electron microscope. Zeitschrift für angewandte Entomologie, 79: 173176.CrossRefGoogle Scholar
Bengtsson, G., Erlandsson, A., and Rundgren, S. 1988. Fungal odour attracts soil Collembola. Soil Biology and Biochemistry, 20: 2530.CrossRefGoogle Scholar
Birch, M.C., Light, D.M., Wood, D.L., Browne, L.E., Silverstein, R.M., Bergot, B.J., Ohloff, G., West, J.R., and Young, J.C. 1980. Pheromonal attraction and allomonal interruption of Ips pini in California by the two enantiomers of ipsdienol. Journal of Chemical Ecology, 6: 703717.CrossRefGoogle Scholar
Boone, C.K., Six, D.L., Zheng, Y., and Raffa, K.F. 2008. Parasitoids and dipteran predators exploit volatiles from microbial symbionts to locate bark beetles. Environmental Entomology, 37: 150161.CrossRefGoogle ScholarPubMed
Camors, F.B., and Payne, T.L. 1973. Sequence of arrival of entomophagous insects to trees infested with the southern pine beetle. Environmental Entomology, 2: 267270.CrossRefGoogle Scholar
Cardoza, Y.J., Klepzig, K.D., and Raffa, K.F. 2006. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecological Entomology, 31: 636645.CrossRefGoogle Scholar
Dahlsten, D.L., and Stephen, M. 1974. Natural enemies and insect associates of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae), in sugar pine. The Canadian Entomologist, 106: 12111217.CrossRefGoogle Scholar
De Moraes, C.M., Lewis, W.J., Pare, P.W., Alborn, H.T., and Tumlinson, J.H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature (London), 393: 570573.CrossRefGoogle Scholar
Furniss, M.M., Harvey, A.E., and Solheim, H. 1995. Transmission of Ophiostoma ips (Ophiostomatales: Ophiostomataceae) by Ips pini (Coleoptera: Scolytidae) to ponderosa pine in Idaho. Annals of the Entomological Society of America, 88: 653660.CrossRefGoogle Scholar
Gara, R.I., Millegan, D.R., and Gibson, K.E. 1999. Integrated pest management of Ips pini (Col., Scolytidae) populations in south-eastern Montana. Journal of Applied Entomology, 123: 529534.CrossRefGoogle Scholar
Gaston, K.J. 1991. The magnitude of global insect species richness. Conservation Biology, 5: 283296.CrossRefGoogle Scholar
Gibb, H., and Hochuli, D.F. 2002. Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biological Conservation, 106: 91100.CrossRefGoogle Scholar
Graham, S.A. 1925. The felled tree as an ecological unit. Ecology, 6: 397411.CrossRefGoogle Scholar
Grove, S.J. 2002. Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics, 33: 123.CrossRefGoogle Scholar
Haack, R.A. 2006. Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Canadian Journal of Forest Research, 36: 269288.CrossRefGoogle Scholar
Hammond, H.E.J. 1997. Arthropod biodiversity from Populus coarse woody material in north-central Alberta: a review of taxa and collection methods. The Canadian Entomologist, 129: 10091033.CrossRefGoogle Scholar
Hanssen, H.P. 1993. Volatile metabolites produced by species of Ophiostoma and Ceratocystis, In Ceratocystis and Ophiostoma: taxonomy, ecology, and pathology. Edited by Wingfield, M.J.Seifert, K.A., and Webber, J.F.. American Phyto-pathological Society Press, St. Paul, Minnesota. pp. 117126.Google Scholar
Hanula, J.L., Horn, S., and Wade, D.D. 2006. The role of dead wood in maintaining arthropod diversity on the forest floor. In Insect Biodiversity and Dead Wood: Proceedings of a Symposium for the 22nd International Congress of Entomology. Edited by Grove, S.J. and Hanula, J.L.. General Technical Report SRS-93, United States Department of Agriculture, Forest Service, Southern Research Station, Asheville, North Carolina.Google Scholar
Hawkins, B.A., Cornell, H.V., and Hochberg, M.E. 1997. Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology, 78: 21452152.CrossRefGoogle Scholar
Hilker, M., Kobs, C., Varma, M., and Schrank, K. 2002. Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. Journal of Experimental Biology, 205: 455461.CrossRefGoogle ScholarPubMed
Hilszczanski, J., Gibb, H., Hjalten, J., Atlegrim, O., Johansson, T., Pettersson, R.B., Ball, J.P., and Danell, K. 2005. Parasitoids (Hymenoptera, Ichneumonoidea) of saproxylic beetles are affected by forest successional stage and dead wood characteristics in boreal spruce forest. Biological Conservation, 126: 456464.CrossRefGoogle Scholar
Howden, H.F., and Vogt, G.B. 1951. Insect communities of standing dead pine (Pinus virginiana Mill). Annals of the Entomological Society of America, 44: 581595.CrossRefGoogle Scholar
Johansson, T., Olsson, J., Hjalten, J., Jonsson, B.G., and Ericson, L. 2006. Beetle attraction to sporocarps and wood infected with mycelia of decay fungi in old-growth spruce forests of northern Sweden. Forest Ecology and Management, 237: 335341.CrossRefGoogle Scholar
Jost, R.W., Rice, A.V., Langor, D.W., and Boluk, Y. 2008. Monoterpene emissions from lodgepole and jack pine bark inoculated with mountain pine beetle-associated fungi. Journal of Wood Chemistry and Technology, 28: 3746.CrossRefGoogle Scholar
Kennedy, B.H. 1984. Effect of multilure and its components on parasites of Scolytus multistriatus (Coleoptera: Scolytidae). Journal of Chemical Ecology, 10: 373385.CrossRefGoogle Scholar
Klepzig, K.D., Raffa, K.F., and Smalley, E.B. 1991. Association of an insect-fungal complex with red pine decline in Wisconsin. Forest Science, 37: 11191139.Google Scholar
Kruess, A., and Tscharntke, T. 1994. Habitat fragmentation, species loss, and biological control. Science (Washington D.C.), 264: 15811584.CrossRefGoogle ScholarPubMed
Lambert, R.L., Lang, G.E., and Reiners, W.A. 1980. Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest. Ecology, 61: 14601473.CrossRefGoogle Scholar
Lim, Y.W., Kim, J.J., Lu, M., and Breuil, C. 2005. Determining fungal diversity on Dendroctonus ponderosae and Ips pini affecting lodgepole pine using cultural and molecular methods. Fungal Diversity, 19: 7994.Google Scholar
Lin, H.C., and Phelan, P.L. 1991. Identification of food volatiles attractive to dusky sap beetle, Carpophilus lugubris (Coleoptera, Nitidulidae). Journal of Chemical Ecology, 17: 12731286.CrossRefGoogle ScholarPubMed
Livingston, R.L. 1979. The pine engraver in Idaho: life history, habits and management recommendations. Report No. 79–3. Idaho Department of Lands, Forest Insect and Disease Control, Coeur d'Alene, Idaho.Google Scholar
Madden, J.L. 1968. Behavioural responses of parasites to the symbiotic fungus associates with Sirex noctilio. Nature (London), 218: 189190.CrossRefGoogle Scholar
Majka, C.G., and Selig, G. 2006. Lacconotus punctatus and the family Mycteridae (Coleoptera) newly recorded in Atlantic Canada. The Canadian Entomologist, 138: 636637.CrossRefGoogle Scholar
Majka, C.G., McCorquodale, D.B., and Smith, M.E. 2007. The Cerambycidae (Coleoptera) of Prince Edward Island: new records and further lessons in biodiversity. The Canadian Entomologist, 139: 258268.CrossRefGoogle Scholar
Martinez, A.S., Fernandez-Arhex, V., and Corley, J.C. 2006. Chemical information from the fungus Amylostereum areolatum and host-foraging behaviour in the parasitoid Ibalia leucospoides. Physiological Entomology, 31: 336340.CrossRefGoogle Scholar
Matthews, P.L., and Stephen, F.M. 1999. Effects of an artificial diet and varied environmental conditions on longevity of Coeloides pissodis (Hymenoptera: Braconidae), a parasitoid of Dendroctonus frontalis (Coleoptera: Scolytidae). Environmental Entomology, 28: 729734.CrossRefGoogle Scholar
Miller, D.R., Borden, J.H., and Slessor, K.N. 1989. Interpopulation and intrapopulation variation of the pheromone, ipsdienol produced by male pine engravers, Ips pini (Say) (Coleoptera, Scolytidae). Journal of Chemical Ecology, 15: 233247.CrossRefGoogle Scholar
Moran, V.C., and Southwood, T.R.E. 1982. The guild composition of arthropod communities in trees. Journal of Animal Ecology, 51: 289306.CrossRefGoogle Scholar
Pettersson, E.M., and Boland, W. 2003. Potential parasitoid attractants, volatile composition throughout a bark beetle attack. Chemoecology, 13: 2737.CrossRefGoogle Scholar
Pettersson, E.M., Birgersson, G., and Witzgall, P. 2001. Synthetic attractants for the bark beetle parasitoid Coeloides bostrichorum Giraud (Hymenoptera: Braconidae). Naturwissenschaften, 88: 8891.CrossRefGoogle ScholarPubMed
Raffa, K.F., and Berryman, A.A. 1983 a. Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle. The Canadian Entomologist, 115: 723734.CrossRefGoogle Scholar
Raffa, K.F., and Berryman, A.A. 1983 b. The role of host plant resistance in the colonization behavior and ecology of bark beetles. Ecological Monographs, 53: 2749.CrossRefGoogle Scholar
Raffa, K.F., and Dahlsten, D.L. 1995. Differential responses among natural enemies and prey to bark beetle pheromones. Oecologia, 80: 556569.Google Scholar
Raffa, K.F., Hobson, K.R., LaFontaine, S., and Aukema, B.H. 2007. Can chemical communication be cryptic? Adaptations by herbivores to natural enemies exploiting prey semiochemistry. Oecologia, 153: 10091019.CrossRefGoogle ScholarPubMed
Reeve, J.D. 1997. Predation and bark beetle dynamics. Oecologia, 112: 4854.CrossRefGoogle ScholarPubMed
Riley, M.A., and Goyer, R.A. 1988. Seasonal abundance of beneficial insects and Ips spp. engraver beetles (Coleoptera, Scolytidae) in felled loblolly and slash pines in Louisiana. Journal of Entomological Science, 23: 357365.CrossRefGoogle Scholar
SAS Institute Inc. 2003. SAS®. Version 9.1.3. SAS Institute Inc., Cary, North Carolina.Google Scholar
Savely, H.E. 1939. Ecological relations of certain animals in dead pine and oak logs. Ecological Monographs, 9: 321385.CrossRefGoogle Scholar
Schowalter, T.D., and Zhang, Y.L. 2005. Canopy arthropod assemblages in four overstory and three understory plant species in a mixed-conifer old-growth forest in California. Forest Science, 51: 233242.Google Scholar
Senger, S.E., and Roitberg, B.D. 1992. Effects of parasitism by Tomicobia tibialis Ashmead (Hymenoptera: Pteromalidae) on reproductive parameters of female pine engravers, Ips pini (Say). The Canadian Entomologist, 124: 509513.CrossRefGoogle Scholar
Shahjahan, M., and Streams, F. 1973. Plant effects on host finding by Leiophron pseudopallipes (Hymenoptera: Braconidae), a parasitoid of the tarnished plant bug. Environmental Entomology, 2: 921925.CrossRefGoogle Scholar
Shaw, M.R., and Hochberg, M.E. 2001. The neglect of parasitic Hymenoptera in insect conservation strategies: the British fauna as a prime example. Journal of Insect Conservation, 5: 253263.CrossRefGoogle Scholar
Shelford, V.E. 1913. Animal communities in temperate America. University of Chicago Press, Chicago, Illinois.CrossRefGoogle Scholar
Six, D.L. 2003. A comparison of mycangial and phoretic fungi of individual mountain pine beetles. Canadian Journal of Forest Research, 33: 13311334.CrossRefGoogle Scholar
Six, D.L., and Paine, T.D. 1998. Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environmental Entomology, 27: 13931401.CrossRefGoogle Scholar
Spradberry, J.P. 1974. The responses of Ibalia species (Hymenoptera: Ibalidae) to the fungal symbionts of siricid woodwasp hosts. Australian Journal of Entomology, 48: 217222.Google Scholar
Stephen, F.M., and Dahlsten, D.L. 1976. The arrival sequence of the arthropod complex following attack by Dendroctonus brevicomis (Coleoptera: Scolytidae) in ponderosa pine. The Canadian Entomologist, 108: 283304.CrossRefGoogle Scholar
Sullivan, B.T., and Berisford, C.W. 2004. Semiochemicals from fungal associates of bark beetles may mediate host location behavior of parasitoids. Journal of Chemical Ecology, 30: 703717.CrossRefGoogle ScholarPubMed
Sullivan, B.T., Pettersson, E.M., Seltmann, K.C., and Berisford, C.W. 2000. Attraction of the bark beetle parasitoid Roptrocerus xylophagorum (Hymenoptera: Pteromalidae) to host-associated olfactory cues. Environmental Entomology, 29: 11381151.CrossRefGoogle Scholar
Thomas, J.B. 1961. The life history of Ips pini (Say) (Coleoptera: Scolytidae). The Canadian Entomologist, 93: 384390.CrossRefGoogle Scholar
Turlings, T.C., and Benrey, B. 1998. Effects of plant metabolites on the behavior and development of parasitic wasps. Ecoscience, 5: 321333.CrossRefGoogle Scholar
Vanderwel, M.C., Malcolm, J.R., Smith, S.M., and Islam, N. 2006. Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. Forest Ecology and Management, 225: 190199.CrossRefGoogle Scholar
VanLaerhoven, S.L., Hanano, T.L., and Stephen, F.M. 2002. Baseline egg load of southern pine beetle parasitoid complex. The Canadian Entomologist, 134: 551560.CrossRefGoogle Scholar
Vet, L.E.M. 1983. Host-habitat location through olfactory cues by Leptopilina clavipes (Hartig) (Hym.: Eucoilidae) a parasitoid of fungivorous Drosophila: the influence of conditioning. Netherlands Journal of Zoology, 33: 225248.CrossRefGoogle Scholar