Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T04:44:00.039Z Has data issue: false hasContentIssue false

Association between Dendroctonus valens and black stain root disease on ponderosa pine in the Sierra Nevada of California

Published online by Cambridge University Press:  02 April 2012

Donald R. Owen*
Affiliation:
California Department of Forestry and Fire Protection, 6105 Airport Road, Redding, California 96002, United States of America
David L. Wood
Affiliation:
Division of Insect Biology, University of California, Berkeley, California 94720, United States of America
John R. Parmeter Jr.
Affiliation:
Florence, Oregon, United States of America
*
1Corresponding author (e-mail: don.owen@fire.ca.gov).

Abstract

The host-colonization behavior of the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), was investigated in stands of ponderosa pine, Pinus ponderosa P. & C. Lawson (Pinaceae), with black stain root disease in the central Sierra Nevada of California. By felling live trees, we found that trees with pitch tubes produced during the initiation of tunneling by D. valens had a significantly higher incidence of black stain root disease, caused by Leptographium wageneri var. ponderosum (Harrington et Cobb), than trees without pitch tubes. Trees with the most D. valens pitch tubes had the greatest likelihood of being diseased. Additionally, observations over a 3-year period revealed that trees with D. valens pitch tubes had a significantly higher mortality rate than trees without pitch tubes. Infection by L. wageneri was confirmed for most of the trees that died, and death typically did not occur without mass attacks by the western pine beetle, D. brevicomis LeConte, and (or) the mountain pine beetle, D. ponderosae Hopkins. Trees with the most D. valens pitch tubes had the highest mortality rate. An experiment was conducted to compare the attraction of D. valens and other insects to wounded-diseased, wounded-symptomless, and unwounded trees. More D. valens, Spondylis upiformis Mannerheim (Coleoptera: Cerambycidae), and Hylastes spp. (Coleoptera: Scolytidae) were attracted to wounded trees than to unwounded trees. Catches of these beetles on wounded-diseased trees were not significantly different from catches on wounded-symptomless trees.

Résumé

Nous avons étudié le comportement de colonisation de l'hôte du dendroctone rouge de l'épinette, Dendroctonus valens LeConte (Coleoptera: Scolytidae), dans des boisés de pins ponderosa, Pinus ponderosa P. & C. Lawson (Pinaceae), infectés de la tache noire des racines, dans le centre de la Sierra Nevada, Californie. L'abattage d'arbres vivants révèle que les arbres possédant des coulées de résine produites par le percement initial des galeries de D. valens ont une incidence plus élevée de la tache noire des racines causée par Leptographium wageneri var. ponderosum (Harrington et Cobb) que les arbres sans coulées de résine. Les arbres avec le plus grand nombre de coulées de résines provoquées par D. valens sont les plus susceptibles d'être infectés. De plus, des observations sur une période de 3 ans indiquent que les arbres avec des coulées de résine provoquées par D. valens ont un taux de mortalité significativement plus élevé que les arbres dépourvus de coulées de résine. La plupart des arbres qui meurent ont une infection confirmée à L. wageneri et la mort s'accompagne typiquement d'attaques massives du dendroctone occidental du pin, D. brevicomis LeConte et (ou) du dendroctone du pin ponderosa, D. ponderosae Hopkins. Les arbres avec le plus grand nombre de coulées de résine provoquées par D. valens ont le taux de mortalité le plus élevé. Une expérience nous a permis de comparer l'attirance de D. valens et d'autres insectes pour les arbres blessés et à racines infectées, pour les arbres blessés mais non symptomatiques et pour les arbres sains. Un nombre plus grand de D. valens, de Spondylis upiformis Mannerheim (Coleoptera: Cerambycidae) et d'Hylastes spp. (Coleoptera: Scolytidae) sont attirés par les arbres blessés que par les arbres sains. Les récoltes de ces insectes sur les arbres blessés et infectés ne diffèrent pas de celles sur les arbres blessés, mais non symptomatiques.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bannwart, D.L., Otrosina, W.J., and Roncadori, R.W. 1998. Blue-stain fungi associated with decline of longleaf pine. Phytopathology, 88(Suppl. 9): S5. [Abstr.]Google Scholar
Cobb, F.W. Jr., 1988. Leptographium wageneri, cause of black-stain root disease: a review of its discovery, occurrence and biology with emphasis on pinyon and ponderosa pine. In Leptographium root diseases on conifers. Edited by Harrington, T.C. and Cobb, F.W. Jr., APS Press, St. Paul, Minnesota. pp. 4162.Google Scholar
Cobb, F.W. Jr., Parmeter, J.R. Jr., Wood, D.L., and Stark, R.W. 1974. Root pathogens as agents predisposing ponderosa pine and white fir to bark beetles. In Proceedings of the 4th International Conference on Fomes annosus, Athens, Georgia, 17–22 September 1973. Edited by Kuhlman, E.G.. USDA Forest Service, Washington, District of Columbia. pp. 815.Google Scholar
Eaton, C.B., and Lara, R.R. 1967. Red turpentine beetle Dendroctonus valens LeConte. In Important forest insects and diseases of mutual concern to Canada, the United States, and Mexico. Edited by Davidson, A.G. and Prentice, R.M.. Publication 1180. Canadian Department of Forestry and Rural Development, Ottawa, Ontario. pp. 2124.Google Scholar
Eckhardt, L.G., Goyer, R.A., Klepzig, K.D., and Jones, J.P. 2004. Interactions of Hylastes species (Coleoptera: Scolytidae) with Leptographium species associated with loblolly pine decline. Journal of Economic Entomology, 97(2): 468474.CrossRefGoogle ScholarPubMed
Erbilgin, N., and Raffa, K.F. 2000. Opposing effects of host monoterpenes on responses by two sympatric species of bark beetles to their aggregation pheromones. Journal of Chemical Ecology, 26(11): 25272548.Google Scholar
Erbilgin, N., and Raffa, K.F. 2002. Association of declining red pine stands with reduced populations of bark beetle predators, seasonal increases in root colonizing insects, and incidence of root pathogens. Forest Ecology and Management, 164: 221236.Google Scholar
Erbilgin, N., Szele, A., Klepzig, K.D., and Raffa, K.F. 2001. Trap type, chirality of alpha-pinene, and geographic region affect sampling efficiency of root and lower stem insects in pine. Journal of Economic Entomology, 94(5): 11131121.CrossRefGoogle ScholarPubMed
Furniss, M.M., and Schmitz, R.F. 1971. Comparative attraction of Douglas-fir beetles to frontalin and tree volatiles. US Forest Service Research Paper INT-96.Google Scholar
Goheen, D.J., and Cobb, F.W. Jr., 1978. Occurrence of Verticicladiella wagenerii and its perfect state, Ceratocystis wageneri sp. nov., in insect galleries. Phytopathology, 68: 11921195.CrossRefGoogle Scholar
Goheen, D.J., and Cobb, F.W. Jr., 1980. Infestation of Ceratocystis wageneri-infected ponderosa pines by bark beetles (Coleoptera: Scolytidae) in the central Sierra Nevada. The Canadian Entomologist, 112(7): 725730.Google Scholar
Goheen, D.J., Cobb, F.W. Jr., Wood, D.L., and Rowney, D.L. 1985. Visitation frequencies of some insect species on Ceratocystis wageneri-infected and apparently healthy ponderosa pines. The Canadian Entomologist, 117(12): 15351543.CrossRefGoogle Scholar
Harrington, T.C., and Cobb, F.W. Jr., 1983. Pathogenicity of Leptographium and Verticicladiella spp. isolated from roots of western North American conifers. Phytopathology, 73: 596599.CrossRefGoogle Scholar
Highley, L., and Tattar, T.A. 1985. Leptographium terebrantis and black turpentine beetles [Dendroctonus terebrans] associated with blue stain and mortality of black pines [Pinus thunbergiana] and scotch pines [Pinus sylvestris] on Cape Cod, Massachusetts [USA]. Plant Disease, 69(6): 528530.Google Scholar
Hobson, K.R., Wood, D.L., Cool, L.G., White, P.R., Ohtsuka, T., Kubo, I., and Zavarin, E. 1993. Chiral specificity in responses by the bark beetle Dendroctonus valens to host kairomones. Journal of Chemical Ecology, 19: 18371846.Google Scholar
Joseph, G., Kelsey, R.G., Peck, R.W., and Niwa, C.G. 2001. Response of some scolytids and their predators to ethanol and 4-allylanisole in pine forests of central Oregon. Journal of Chemical Ecology, 27(4): 697715.Google Scholar
Kelsey, R.G., Joseph, G., and Thies, W.G. 1998. Sapwood and crown symptoms in ponderosa pine infected with black-stain and annosum root disease. Forest Ecology and Management, 111: 181191.CrossRefGoogle Scholar
Klepzig, K.D., Raffa, K.F., and Smalley, E.B. 1991. Association of an insect—fungal complex with red pine decline in Wisconsin. Forest Science, 37: 11191139.Google Scholar
Klepzig, K.D., Raffa, K.F., and Smalley, E.B. 1995. Dendroctonus valens and Hylastes porculus (Coleoptera: Scolytidae): vectors of pathogenic fungi (Ophiostomatales) associated with red pine decline disease. The Great Lakes Entomologist, 28(1): 8187.Google Scholar
Miller, J.M., and Keen, F.P. 1960. Biology and control of the western pine beetle. US Forest Service Miscellaneous Publication 800.Google Scholar
Moeck, H.A., Wood, D.L., and Lindahl, K.Q. Jr., 1981. Host selection behavior of bark beetles (Coleoptera: Scolytidae) attacking Pinus ponderosa, with special emphasis on the western pine beetle, Dendroctonus brevicomis. Journal of Chemical Ecology, 7(1): 4983.Google Scholar
Owen, D.R., Lindahl, K.Q. Jr., Wood, D.L., and Parmeter, J.R. Jr., 1987. Pathogenicity of fungi isolated from Dendroctonus valens, D. brevicomis, and D. ponderosae to ponderosa pine seedlings. Phytopathology, 77(4): 631636.CrossRefGoogle Scholar
Paine, T.D., and Hanlon, C.C. 1991. Response of Dendroctonus brevicomis and Ips paraconfusus (Coleoptera: Scolytidae) to combinations of synthetic pheromone attractants and inhibitors verbenone and ipsdienol. Journal of Chemical Ecology, 17(11): 21632176.Google Scholar
Parmeter, J.R. Jr., Slaughter, G.W., Chen, M.-M., Wood, D.L., and Stubbs, H.A. 1989. Single and mixed inoculations of ponderosa pine with fungal associates of Dendroctonus spp. Phytopathology, 79(7): 768772.Google Scholar
Schowalter, T.D., and Filip, G.M. (Editors). 1993. Beetle—pathogen interactions in conifer forests. Academic Press, San Diego.Google Scholar
Smith, R.H. 1971. Red turpentine beetle. US Forest Service Forest Pest Leaflet 55.Google Scholar
Smith, R.H., Wickman, B.E., Hall, R.C., DeMars, C.J., and Ferrell, G.T. 1981. The California pine risk-rating system: its development, use, and relationship to other systems. In Hazard-rating systems in forest insect pest management: symposium proceedings. Coordinated by Hedden, R.L., Barras, S.J., and Coster, J.E.. US Forest Service General Technical Report WO-27. pp. 5369.Google Scholar
Sokal, R.R., and Rohlf, F.J. 1981. Biometry. 2nd ed. W.H. Freeman and Co., New York.Google Scholar
SPSS. 1994. SPSS for Windows 6.1 [computer program]. SPSS Inc., Chicago.Google Scholar
Sun, J., Miao, Z., Zhang, Z., Zhang, Z., and Gillette, N.E. 2004. Red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), response to host semiochemicals in China. Environmental Entomology, 33(2): 206212.CrossRefGoogle Scholar
Vité, J.P., and Gara, R.I. 1962. Volatile attractants from ponderosa pine attacked by bark beetles (Coleoptera: Scolytidae). Contributions from Boyce Thompson Institute for Plant Research, 21(5): 251274.Google Scholar
Wingfield, M.J. 1983. Association of Verticicladiella procera and Leptographium terebrantis with insects in the Lake States. Canadian Journal of Forest Research, 13: 12381245.Google Scholar
Zar, J.H. 1984. Biostatistical analysis. 2nd ed. Prentice Hall, Inc., Englewood Cliffs, New Jersey.Google Scholar