Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T17:39:12.155Z Has data issue: false hasContentIssue false

AUTOGENY AND BLOOD-FEEDING BY CULEX TARSALIS (DIPTERA: CULICIDAE) AND THE INTERVAL BETWEEN OVIPOSITION AND FEEDING

Published online by Cambridge University Press:  31 May 2012

R. L. Nelson
Affiliation:
School of Public Health, Department of Biomedical and Environmental Health Sciences, University of California, Berkeley 94720
M. M. Milby
Affiliation:
School of Public Health, Department of Biomedical and Environmental Health Sciences, University of California, Berkeley 94720

Abstract

Female Culex tarsalis Coquillett trapped in CO2-baited light traps or reared from field-collected pupae were marked with fluorescent dust, released, and recaptured in traps baited with CO2 with or without light. Recaptures of trapped females peaked on the first night of recapture collections. Recaptures of reared females peaked on the first or second night when autogeny rates were low (25–44%) but 2-4 nights later when rates were high (86–88%). It was concluded that autogenous females did not seek blood until after they had oviposited, and that autogenously induced delays in feeding probably influence the extent of virus transmission by C. tarsalis.

Stretched follicular tubes indicating recent oviposition were found in 23.4% and 5.2% of empty parous females from shelters and CO2-baited traps, respectively, and in 2.3% of freshly engorged parous females from shelters. Females often failed to blood-feed until at least the second night after oviposition.

Résumé

Des femelles de Culex tarsalis Coquillett capturées au piège lumineux appâté au CO2, ou émergées de pupes provenant du terrain, ont été marquées à la poussière fluorescente, relâchées et recapturées à l'aide de pièges appâtés au CO2 mais sans lumière. Le nombre maximum de femelles piégées recapturées a été observé la première nuit de recapture. Le nombre maximum de recaptures de femelles émergées fut observé la première ou la deuxième nuit lorsque les pourcentages d'autogéniticté étaient bas (25–44%), mais 2–4 nuits plus tard lorsqu'ils étaient élevés (86–88%). On a conclu que les femelles autogènes ne recherchent pas de sang avant d'avoir déposé des oeufs, et que les délais de la prise de sang résultant de l'autogénicité ont probablement une incidence sur la transmission de virus par C. tarsalis.

La distension des tubes folliculaires indiquant l'oviposition récente fut observée chez 23.4% et 5.2% des femelles reproductives à jeun provenant respectivement d'abris et de pièges à CO2, et chez 2.3% des femelles reproductives récemment gorgées provenant des abris. Les femelles n'ont souvent pris aucun repas de sang au moins jusqu'à la deuxième nuit après l'oviposition.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellamy, R. E. and Corbet, P. S.. 1973. Combined autogenous and anautogenous ovarian development in individual Culex tarsalis Coq. (Dipt., Culicidae). Bull. ent. Res. 63: 335346.Google Scholar
Bellamy, R. E. and Kardos, E. H.. 1958. A strain of Culex tarsalis Coq. reproducing without blood meals. Mosquito News 18: 132134.Google Scholar
Bellamy, R. E. and Reeves, W. C.. 1952. A portable mosquito bait-trap. Mosquito News 12: 256258.Google Scholar
Germain, M., Hervé, J. P., and Geoffroy, B.. 1974. Evaluation de la durée du cycle trophogonique d'Aedes africanus (Théobald), vecteur potentiel de fièvre jaune, dans une galerie forestière du sud de la République Centrafricaine. Cah. ORSTOM, Sér. Ent. Méd. Parasit. 12: 127133.Google Scholar
(Not seen, abstract in Rev. appl. Ent (B) 63: 6, 1975.)Google Scholar
Gillies, M. T. 1980. The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull. ent. Res. 70: 525532.Google Scholar
Logen, D. and Harwood, R. F.. 1965. Oviposition of the mosquito Culex tarsalis in response to light cues. Mosquito News 25: 462469.Google Scholar
Nelson, M. J. 1971. Winter biology of Culex tarsalis in Imperial Valley, California. Contrib. Am. ent. Inst. 7: 156.Google Scholar
Nelson, R. L. 1964. Parity in winter populations of Culex tarsalis Coquillett in Kern County, California. Am. J. Hyg. 80: 242253.Google Scholar
Nelson, R. L. and Milby, M. M.. 1980. Dispersal and survival of field and laboratory strains of Culex tarsalis (Diptera: Culicidae). J. med. Ent. 17: 146150.Google Scholar
Nelson, R. L., Milby, M. M., Reeves, W. C., and Fine, P. E. M.. 1978. Estimates of survival, population size, and emergence of Culex tarsalis at an isolated site. Ann. ent. soc. Am. 71: 801808.Google Scholar
Newhouse, V. F., Chamberlain, R. W., Johnston, J. G., and Sudia, W. D.. 1966. Use of dry ice to increase mosquito catches of the CDC miniature light trap. Mosquito News 26: 3035.Google Scholar
Service, M. W. 1976. Mosquito Ecology. Applied Science Publishers, London.Google Scholar
Smith, C. E. G. 1975. The significance of mosquito longevity and blood-feeding behaviour in the dynamics of arbovirus infections. Med. Biol. 53: 288294.Google Scholar
Spadoni, R. D., Nelson, R. L., and Reeves, W. C.. 1974. Seasonal occurrence, egg production, and blood-feeding activity of autogenous Culex tarsalis. Ann. ent. Soc. Am. 67: 895902.Google Scholar
Sudia, W. D. and Chamberlain, R. W.. 1962. Battery-operated light trap, an improved model. Mosquito News 22: 126129.Google Scholar