Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T00:13:20.287Z Has data issue: false hasContentIssue false

Bee diversity in naturalizing patches of Carolinian grasslands in southern Ontario, Canada

Published online by Cambridge University Press:  03 January 2012

M.H. Richards*
Affiliation:
Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
A. Rutgers-Kelly
Affiliation:
Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
J. Gibbs
Affiliation:
Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
J.L. Vickruck
Affiliation:
Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
S.M. Rehan
Affiliation:
Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
C.S. Sheffield
Affiliation:
Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
*
1Corresponding author (e-mail: miriam.richards@brocku.ca).

Abstract

The bee fauna (Hymenoptera: Apoidea) of the Niagara Peninsula, at the eastern end of the Carolinian Zone in Ontario, Canada, is poorly known. From April to October 2003, we studied bee abundance and diversity in set-aside grasslands at Brock University and the Glenridge Quarry Naturalization Site in southern St. Catharines, Ontario. Using three sampling methods (pan traps, sweep nets, and aerial nets), we collected and identified 15 733 specimens of 124 species and morphospecies representing all bee families, except Melittidae, found in North America. Abundance-based diversity estimators suggested bee species richness to be as high as 148 species. There were three seasonal peaks in bee abundance (early spring, late spring, and mid-summer) with a lull in activity shortly after the summer solstice. Several indicators suggested substantial impacts of disturbance on the Niagara bee community, including evidence of high dominance by the most abundant species. Comparison of the sampling methods indicated considerable catch variation among taxa; Halictidae and Apidae were dominant in pan trap samples and in sweep–aerial net samples, respectively. However, bee abundances in pan traps and sweep nets were highly correlated, suggesting that both methods fairly sample local bee abundances.

Résumé

La faune d'abeilles (Hymenoptera : Apoidea) de la péninsule de Niagara, à la bordure est de la zone carolinienne en Ontario, Canada, est mal connue. D'avril à octobre 2003, nous avons étudié l'abondance et la diversité des abeilles dans des prairies réservées à l'université Brock et le site de naturalisation Glenridge Quarry dans le sud de St. Catherines, Ontario. Nous avons récolté à l'aide de trois méthodes d'échantillonnage (pièges à cuvette, filets fauchoirs, filets aériens) et identifié 15 733 spécimens appartenant à 124 espèces et morpho-espèces, représentant toutes les familles d'abeilles retrouvées en Amérique du Nord, à l'exception des Melittidae. Des estimateurs de la diversité basés sur l'abondance font penser que la richesse spécifique des abeilles pourrait atteindre 148 espèces. Il y a trois pics saisonniers d'abondance (début du printemps, fin du printemps et milieu de l'été) avec une accalmie dans l'activité après le solstice d'été. Plusieurs indicateurs laissent croire à des impacts sérieux des perturbations sur la communauté d'abeilles de Niagara, en particulier la forte dominance des espèces les plus abondantes. Une comparaison des méthodes d'échantillonnage indique une variation considérable des récoltes en fonction des taxons; les Halictidae et les Apidae dominent respectivement dans les récoltes dans les pièges à cuvette et aux filets fauchoirs–aériens. Il existe cependant une forte corrélation entre les abondances d'abeilles dans les cuvettes et les filets fauchoirs, ce qui indique que les deux méthodes échantillonnent adéquatement les abondances locales d'abeilles.

[Traduit par la Rédaction]

Type
Biodiversity & Evolution
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Booth, C.Zimmerman, J. 1972. A guide in full color: wildflowers and weeds. Van Norstrand Reinhold Company, New York.Google Scholar
Cane, J.H.Griswold, T.Parker, F.D. 2007 Substrates and materials used for nesting by North American Osmia bees (Hymenoptera : Apiformes : Megachilidae). Annals of the Entomological Society of America, 100: 350358. doi:10.1603/0013-8746(2007)100[350:SAMUFN]2.0.CO;2CrossRefGoogle Scholar
Cane, J.H.Minckley, R.L.Kervin, L.J. 2000 Sampling bees (Hymenoptera : Apiformes) for pollinator community studies: Pitfalls of pan-trapping. Journal of the Kansas Entomological Society, 73: 225231.Google Scholar
Cane, J.H.Minckley, R.L.Kervin, L.J.Roulston, T.H.Williams, N.M. 2006 Complex responses within a desert bee guild (Hymenoptera : Apiformes) to urban habitat fragmentation. Ecological Applications, 16: 632644. doi:10.1890/1051-0761(2006)016[0632:CRWADB]2.0.CO;2CrossRefGoogle ScholarPubMed
Cane, J.H.Tepedino, V.J. 2001 Causes and extent of declines among native North American invertebrate pollinators: Detection, evidence, and consequences. Conservation Ecology, 5 (1):1. Available from http://www.consecol.org/vol5/iss1/art1/ [accessed 1 May 2010]CrossRefGoogle Scholar
Chao, A. 1984 Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11: 265270.Google Scholar
Chao, A.Lee, S.M. 1992 Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87: 210217. doi:10.2307/2290471.CrossRefGoogle Scholar
Colwell, R. 2009. Estimates: Statistical estimation of species richness and shared species from samples [online]. Available from http://viceroy.eeb.uconn.edu/EstimateS [accessed 28 February 2011].Google Scholar
Dickinson, T.Metsger, D.Bull, J.Dickinson, R. 2004. The ROM field guide to wildflowers of Ontario. Royal Ontario Museum and McClelland and Stewart Ltd., Toronto.Google Scholar
Duelli, P.Obrist, M.K. 1998 In search of the best correlates for local organismal biodiversity in cultivated areas. Biodiversity and Conservation, 7: 297309. doi:10.1023/A:1008873510817CrossRefGoogle Scholar
Griswold, T.Parker, F.D.Tepedino, V.J. 1997 The bees of the San Rafael desert: Implications for the bee fauna of the Grand Staircase - Escalante National Monument. In Proceedings of the Grande Staircase-Escalante National Monument Science Symposium, Cedar City, Utah. Edited by Hill, L.M.. U.S. Department of the Interior, Bureau of Land Management, Salt Lake City, Utah. pp. 175186.Google Scholar
Grixti, J.C.Packer, L. 2006 Changes in the bee fauna (Hymenoptera: Apoidea) of an old field site in southern Ontario, revisited after 34 years. The Canadian Entomologist, 138: 147164. doi:10.4039/N05-034CrossRefGoogle Scholar
Kevan, P.G.Greco, C.F.Belaoussoff, S. 1997 Log-normality of biodiversity and abundance in diagnosis and measuring of ecosystemic health: pesticide stress on pollinators on blueberry heaths. Journal of Applied Ecology, 34: 11221136. doi:10.2307/2405226CrossRefGoogle Scholar
Laverty, T.Harder, L. 1988 The bumble bees of eastern Canada. The Canadian Entomologist, 120: 965987. doi:10.4039/Ent120965-11CrossRefGoogle Scholar
MacKay, P.A. 1970 Observations on periodicity and ecological interactions of the Apoidea and their parasite complexes in an Ontario biotope. MSc thesis., University of Toronto, Toronto.Google Scholar
MacKay, P.A.Knerer, G. 1979 Seasonal occurrence and abundance in a community of wild bees from an old field habitat in southern Ontario. The Canadian Entomologist, 111: 367376. doi:10.4039/Ent111367-3CrossRefGoogle Scholar
Magurran, A.E. 2004. Measuring biological diversity. Blackwell, Oxford, United Kingdom.Google Scholar
Matteson, K.C.Ascher, J.S.Langellotto, G.A. 2008 Bee richness and abundance in New York city urban gardens. Annals of the Entomological Society of America, 101: 140150. doi:10.1603/0013-8746(2008)101[140:BRAAIN]2.0.CO;2CrossRefGoogle Scholar
Minckley, R.L.Cane, J.H.Kervin, L.Roulston, T.H. 1999 Spatial predictability and resource specialization of bees (Hymenoptera: Apoidea) at a superabundant, widespread resource. Biological Journal of the Linnean Society, 67: 119147. doi:10.1111/j.1095-8312.1999.tb01933.xCrossRefGoogle Scholar
Mitchell, T.B. 1960 Bees of the eastern United States. North Carolina Agricultural Experiment Station Technical Bulletin, 141: 1538.Google Scholar
Mitchell, T.B. 1962 Bees of the eastern United States. North Carolina Agricultural Experiment Station Technical Bulletin, 152: 1557.Google Scholar
Muller, M.R.Middleton, J. 1994 A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 9: 151157.CrossRefGoogle Scholar
Oertli, S.Muller, A.Dorn, S. 2005 Ecological and seasonal patterns in the diversity of a species-rich bee assemblage (Hymenoptera: Apoidea: Apiformes). European Journal of Entomology, 102: 5363.CrossRefGoogle Scholar
Packer, L.Gravel, A.I.D.LeBuhn, G. 2007 Phenology and social organization of Halictus (Seladonia) tripartitus (Hymenoptera: Halictidae). Journal of Hymenoptera Research, 16: 281292.Google Scholar
Paiero, S.M.Buck, M. 2003 The giant resin bee, Megachile sculpturalis Smith, and other newly introduced and newly recorded native Megachilidae and Andrenidae (Apoidea) from Ontario. Journal of the Entomological Society of Ontario, 134: 141143.Google Scholar
Peterson, T.McKenny, M. 1968 A field guide to wildflowers of Northeastern and North-Central North America. Houghton Mifflin, Boston.Google Scholar
Rehan, S.M.Richards, M.H. 2010 Nesting biology and subsociality in the small carpenter bee, Ceratina calcarata (Hymenoptera: Apidae). The Canadian Entomologist, 142: 6574. doi:10.4039/n09-056CrossRefGoogle Scholar
Reid, R.Symmes, R. 1997 Conservation strategy for Carolinian Canada. Carolinian Canada Coalition. London, Ontario.Google Scholar
Richards, M.H.Vickruck, J.L.Rehan, S.M. 2010 Colony social organisation of Halictus confusus in southern Ontario, with comments on sociality in the subgenus H. (Seladonia). Journal of Hymenoptera Research, 19: 144158.Google Scholar
Richardson, J.L.M.Richards, M.H. 2008 A randomization program to compare species richness values. Insect Conservation and Diversity, 1: 135141. doi:10.1111/j.1752-4598.2008.00018.xCrossRefGoogle Scholar
Riverie, L.A.Lawrence, P.L. 1999 Forest corridor mapping for the Carolinian Canada Zone. 14, Heritage Resource Centre, University of Waterloo, Waterloo.Google Scholar
Romankova, T. 2004a Bees of the genus Colletes of Ontario (Hymenoptera, Apoidea, Colletidae). Journal of the Entomological Society of Ontario, 134: 91106.Google Scholar
Romankova, T. 2004b Ontario nest-building bees of the tribe Anthidiini (Hymentopera, Megachilidae). Journal of the Entomological Society of Ontario, 134: 8589.Google Scholar
Sheffield, C.S.Griswold, T.Richards, M.H. 2010 Discovery of the Old World bee, Megachile (Pseudomegachile) ericetorum (Hymenoptera: Megachilidae), in Ontario, Canada. Journal of the Entomological Society of Ontario, 141: 8592.Google Scholar
Sugar, A.Finnamore, A.Goulet, H.Cumming, J.Kerr, J.T.De Guisti, M.Packer, L. 1998 A preliminary survey of symphytan and aculeate Hymenoptera from oak savannahs in southern Ontario. Proceedings of the Entomological Society of Ontario, 129: 918.Google Scholar
Taki, H.Kevan, P.G.Ascher, J. 2007 Landscape effects of forest loss in a pollination system. Landscape Ecology, 22: 15751587. doi:10.1007/s10980-007-9153-zCrossRefGoogle Scholar
Tepedino, V.J.Stanton, N.L. 1981 Diversity and competition in bee-plant communities on short-grass prairie. Oikos, 36: 3544. doi:10.2307/3544376CrossRefGoogle Scholar
Tepedino, V.J.Stanton, N.L. 1982 Estimating floral resources and flower visitors in studies of pollinator-plant communities. Oikos, 38: 384386. doi:10.2307/3544682CrossRefGoogle Scholar
Tommasi, D.Miro, A.Higo, H.A.Winston, M.L. 2004 Bee diversity and abundance in an urban setting. The Canadian Entomologist, 136: 851869. doi:10.4039/N04-010CrossRefGoogle Scholar
Tscharntke, T.Gathman, A.Steffan-Dewenter, I. 1998 Bioindication using trap-nesting bees and wasps and their natural enemies: community structure and interactions. Journal of Applied Ecology, 35: 708719. doi:10.1046/j.1365-2664.1998.355343.xCrossRefGoogle Scholar
Vickruck, J.L. 2010 The nesting biology of Ceratina (Hymenoptera: Apidae) in the Niagara Region: New species, nest site selection and parasitism. MSc thesis, Brock University, St. Catharines, Ontario, Canada.Google Scholar
Vickruck, J.L.Rehan, S.M.Sheffield, C.S.Richards, M.H. 2011 Nesting biology and DNA barcode analysis of Ceratina dupla and C. mikmaqi, with comparisons to C. calcarata (Hymenoptera: Apidae: Xylocopinae). The Canadian Entomologist, 143: 254262.CrossRefGoogle Scholar