Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T00:00:37.682Z Has data issue: false hasContentIssue false

Biology and development of Acrolepiopsis assectella (Lepidoptera: Acrolepiidae) in eastern Ontario

Published online by Cambridge University Press:  02 April 2012

P. G. Mason*
Affiliation:
Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0C6
M. Appleby
Affiliation:
Ontario Ministry of Agriculture, Food and Rural Affairs, 95 Dundas Street, Brighton, Ontario, Canada K0K 1H0
S. Juneja
Affiliation:
Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0C6
J. Allen
Affiliation:
Ontario Ministry of Agriculture, Food and Rural Affairs, 95 Dundas Street, Brighton, Ontario, Canada K0K 1H0
J.-F. Landry
Affiliation:
Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0C6
*
1 Corresponding author (e-mail: peter.mason@agr.gc.ca).

Abstract

Leek moth, Acrolepiopsis assectella, recently became established in the Ottawa Valley, where it significantly damages garlic, leek, and onion (Allium L., Liliaceae) crops. At a threshold of 7 °C, populations in eastern Ontario require 444.6 day-degrees to develop from egg to adult. Pheromone-trap data identify spring, early-summer, and late-summer flight periods of overwintered 1st- and 2nd-generation adults, respectively. Depending on ambient temperatures, the life cycle takes 3–6 weeks in the field, with three generations possible. Management strategies such as application of reduced-risk foliar insecticides and use of row covers require precise timing to target appropriate life-cycle stages. Implementation windows can be determined by incorporating pheromone-trap data and ambient air temperature into a life-cycle development model. A proposed integrated pest management program will involve the use of pesticides, mechanical barriers, and classical biological control.

Résumé

La teigne du poireau, Acrolepiopsis assectella, s’est récemment établie dans la région de la vallée de l'Outaouais où elle cause d'importants dommages aux cultures d'aulx, de poireaux et d'oignons (Allium L., Liliaceae). À un seuil de 7 °C, les populations de l'est de l'Ontario requièrent 444,6 jours-degrés pour se développer de l'œuf à l'adulte. Les données provenant de pièges à phéromones indiquent des périodes de vol au printemps, en été et à la fin de l'été pour les adultes de la génération qui a hiverné, de la 1ère génération et de la 2e génération respectivement. Selon les températures ambiantes, le cycle biologique dure de 3–6 semaines en nature et il y a donc possibilité de trois générations. Les stratégies de gestion, telles que l'épandage d'insecticides foliaires à risque réduit et l'utilisation de bâches à plat sur les rangées, exigent un calendrier précis afin de cibler les stades appropriés du cycle biologique. Les fenêtres d'intervention peuvent être déterminées en incorporant les données provenant des pièges à phéromones et les températures ambiantes en un modèle de développement du cycle biologique. Un programme de lutte intégrée comporterait l'utilisation de pesticides, de barrières mécaniques et de lutte biologique classique.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.K., and Appleby, M. 2008. Evaluation of organic and conventional insecticides for control of leek moth on garlic and onion, 2007. Pest Management Research Report, 46: 9294.Google Scholar
Allen, J.K., Appleby, M., and Mason, P. 2007. Evaluation of organic and conventional insecticides for control of leek moth on garlic and onion, 2006. Pest Management Research Report, 45: 5659.Google Scholar
Allison, J., Jenner, W., Cappuccino, N., and Mason, P.G. 2007. Oviposition and feeding preference of Acrolepiopsis assectella Zell. (Lepidoptera: Acrolepiidae). Journal of Applied Entomology, 131: 690697. doi:10.1111/j.1439-0418.2007.01170.x.CrossRefGoogle Scholar
Anonymous. 2010 a. Sunrise and sunset for Sweden, Stockholm, 1998, 1999 [online]. Available from http://www.timeanddate.com/worldclock/astronomy.html?n5188&month58&year51999&obj5sun&afl5-11&day51 [accessed 12 January 2010].Google Scholar
Anonymous. 2010 b. Sunrise and sunset for Ontario, Ottawa, 2004, 2005 [online]. Available from http://www.timeanddate.com/worldclock/astronomy.html?n5188&month57&year52005&obj5sun&afl5-11&day51 [accessed 8 January 2010].Google Scholar
Auger, J., and Thibout, E. 1983. Spécificité des substances non volatiles des Allium responsables de la ponte de la teigne du poireau, Acrolepiopsis assectella (Lepidoptera). Entomologica Experimentalis et Applicata, 34: 7177. doi:10.1007/BF00300902.CrossRefGoogle Scholar
Ayres, M.P., and Scriber, J.M. 1994. Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae). Ecological Monographs, 64: 465482. doi:10.2307/2937146.CrossRefGoogle Scholar
Bouchet, J. 1964. Quelques observations sur les ennemis des cultures légumières en France en 1963. Phytoma, 138: 2530.Google Scholar
Bouchet, J. 1973. La prevision des attaques de la teigne du poireau a la station d'avertissements agricoles des pays de la Loire. Phytoma–Défense des Cultures, 25: 2428.Google Scholar
Bouchet, J. 1980. La teigne du poireau un ravageur des cultures légumières en recrudescence. Phytoma, 154: 89.Google Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierres, A.P., and MacKauer, M. 1974. Temperature requirements of some aphids and their parasitoids. Journal of Applied Ecology, 11: 431438. doi:10.2307/2402197.CrossRefGoogle Scholar
Clarke, A. 2003. Costs and consequences of evolutionary temperature adaptation. Trends in Ecology and Evolution, 18: 573581. doi:10.1016/j.tree.2003.08.007.CrossRefGoogle Scholar
Danks, H.V. 1987. Insect dormancy: an ecological perspective. Biological Survey of Canada, National Museum of Natural Sciences, Ottawa, Ontario.Google Scholar
Denlinger, D.L. 2002. Regulation of diapause. Annual Review of Entomology, 47: 93122. PMID:11729070 doi:10.1146/annurev.ento.47.091201.145137.CrossRefGoogle ScholarPubMed
Dent, D.R. 1997. Quantifying insect populations: estimates and parameters. In Methods in ecological and agricultural entomology. Edited by Dent, D.R. and Walton, M.P.. CAB International, Wallingford, United Kingdom. pp. 57109.CrossRefGoogle Scholar
Ghalia, A.A., and Thibout, E. 1982. Fréquence de la diapause reproductrice en fonction de l'évolution de la photoperiode à températures constantes et recherche du stade sensible chez une souche d'Acrolepiopsis assectella (Lep., Yponomeutioidea). Annales de la Société Entomologique de France, 18: 173179.CrossRefGoogle Scholar
Garland, J. 2002. Pest facts sheet—leek moth Acrolepiopsis assectella (Zeller, 1839). Bulletin of the Entomological Society of Canada, 34: 129153.Google Scholar
Gilbert, N., and Coaker, T.H. 1988. Differential survival of British and Mediterranean strains of Pieris rapae (L.) (Lepidoptera: Pieridae) on different brassica cultivars. Bulletin of Entomological Research, 78: 669671. doi:10.1017/S0007485300015522.CrossRefGoogle Scholar
Gomi, T. 1996. A mechanism for the decrease in developmental period of a trivoltine population of Hyphantria cunea (Lepidoptera: Arctiidae). Applied Entomology and Zoology, 31: 217223.CrossRefGoogle Scholar
Handfield, L., Landry, J.-F., Landry, B., and Lafontaine, J.D. 1997. Liste des Lépidoptères du Québec et du Labrador. Fabreries, Supplément 7.Google Scholar
Harcourt, D.G., and Cass, L.M. 1966. Photoperiodism and fecundity in Plutella maculipennis (Curt.). Nature, 210(5032): 217218. doi:10.1038/210217a0.CrossRefGoogle Scholar
Herman, W.S. 1981. Studies on the adult reproductive diapause of the monarch butterfly, Danaus plexippus. Biological Bulletin, 160: 89106. doi:10.2307/1540903.CrossRefGoogle Scholar
Honěk, A. 1996. Geographical variation in thermal requirements for insect development. European Journal of Entomology, 93: 303312.Google Scholar
Honěk, A. 1999. Constraints on thermal requirements for insect development. Entomological Science, 2: 615621.Google Scholar
Jenner, W.H., Mason, P.G., Cappuccino, N., and Kuhlmann, U. 2009. Native range assessment of classical biological control agents: impact of inundative releases as pre-introduction evaluation. Bulletin of Entomological Research, doi:10.1017/S0007485309990368.CrossRefGoogle Scholar
Klass, C. 2009. Leek moth found in NY [online]. Available from http://blogs.cce.cornell.edu/community-horticulture/2009/09/08/leek-mothfound-in-ny/ [accessed 26 November 2009].Google Scholar
Lamb, R.J., MacKay, P.A., and Gerber, G.H. 1987. Are development and growth of pea aphids, Acyrthosiphon pisum, in North America adapted to local temperatures. Oecologia, 72: 170177. doi:10.1007/BF00379263.CrossRefGoogle ScholarPubMed
Landry, J.-F. 2007. Taxonomic review of the leek moth genus Acrolepiopsis (Lepidoptera: Acrolepiidae) in North America. The Canadian Entomologist, 139: 319353. doi:10.4039/N06-098.CrossRefGoogle Scholar
Mason, P.G., Appleby, M., Callow, K., and Allen, J. 2006 a. Effects of Bacillus thuringiensis and Spinosad on leek moth in garlic and onion. Pest Management Research Report, 44: 3240.Google Scholar
Mason, P.G., Appleby, M., Callow, K., Allen, J., Fraser, H., and Landry, J.-F. 2006 b. Leek moth Acrolepiopsis assectella (Lepidoptera: Acrolepiidae) a pest of Allium spp.: biology and minor use insecticide registration: final project report to “Improving Farming Systems Program,” AAFC Pest Management Centre, Ottawa, Ontario.Google Scholar
Nyrop, J.P., Shelton, A.M., and Theunissen, J. 1989. Value of a control decision rule for the leek moth infestations in leek. Entomologica Experimentalis et Applicata, 53: 167176. doi:10.1007/BF00187998.CrossRefGoogle Scholar
Plaskota, E., 1986. Biological principles of leek moth (Acrolepia assectella Zeller, Lepidoptera: Plutellidae) control. III. Reproductive behaviour of the leek moth. Annals of the Warsaw Agricultural University, 13: 4751.Google Scholar
Plaskota, E., and Dabrowski, Z.T. 1986. Biological principles of leek moth (Acrolepia assectella Zellar, Lepidoptera: Plutellidae) control. II. Biology. Annals of the Warsaw Agricultural University, 13: 3546.Google Scholar
Sarnthoy, O., Keinmeesuke, P., Sinchaisri, N., and Nakasuji, F. 1989. Development and reproductive rate of the diamondback moth Plutella xylostella from Thailand. Applied Entomology and Zoology, 24: 202208.CrossRefGoogle Scholar
SAS Institute Inc. 2004. JMP. Version 5.1 [computer program]. SAS Institute Inc., Cary, North Carolina.Google Scholar
Soni, S.K., and Ellis, P.R. 1990. Insect pests. In Onion and allied crops. Vol. II. Agronomy, biotic interactions, pathology, and crop protection. Edited by Rabinowitch, H.D. and Brewster, J.L.. CRC Press, Inc., Boca Raton, Florida. pp. 213272.Google Scholar
Trudgill, D.L., Honěk, A., Li, D., and Van Straalen, N.M. 2005. Thermal time-concepts and utility. Annals of Applied Biology, 146: 114. doi:10.1111/j.1744-7348.2005.04088.x.CrossRefGoogle Scholar
Umeya, K., and Yamada, H. 1973. Threshold temperature and thermal constants for development of the diamond-back moth, Plutella xylostella L., with reference to local differences. Japanese Journal of Applied Entomology and Zoology, 17: 1924.CrossRefGoogle Scholar
Yu, D.S. 2009. Taxapad: scientific names for information management [online]. Available from http://www.taxapad.com/taxapadmain.php [accessed 24 April 2010].Google Scholar
Åsman, K. 2001. Effect of temperature on development and activity periods of the leek moth Acrolepiopsis assectella Zell. (Lep., Acrolepiidae). Journal of Applied Entomology, 125: 361364. doi:10.1046/j.1439-0418.2001.00558.x.CrossRefGoogle Scholar