Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T23:47:51.177Z Has data issue: false hasContentIssue false

Callus formation and bark moisture as potential physical defenses of northern red oak, Quercus rubra, against red oak borer, Enaphalodes rufulus (Coleoptera: Cerambycidae)

Published online by Cambridge University Press:  02 April 2012

Melissa K. Fierke*
Affiliation:
Department of Entomology, Agriculture Building Room 319, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
Fred M. Stephen
Affiliation:
Department of Entomology, Agriculture Building Room 319, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
*
1Corresponding author (e-mail: mkfierke@esf.edu).

Abstract

The red oak borer, Enaphalodes rufulus (Haldeman), is a native wood-boring beetle implicated as a major contributor to recent high levels of oak mortality in northern Arkansas. Northern red oaks, Quercus rubra L. (Fagaceae), were grouped into three classes of red oak borer infestation history based on crown condition and basal red oak borer emergence holes: class I (low infestation), class II (moderate infestation), and class III (high infestation). In 2004 and 2005, trees from each class were mechanically wounded and callus formation was measured after one year. Class I trees exhibited significantly greater callus formation than class III trees in both years. Monthly measurements in spring and summer of 2006 indicated significant differences in callus formation among classes, with class I trees healing over significantly earlier. Moisture was measured in bark samples removed 1 week and 4 weeks after initiation of three treatments: control, mechanical wounding, and artificial insertion of larvae. Moisture levels did not vary among infestation classes or treatments. This research indicates that bark moisture is likely not a defense against red oak borer, but that callus overgrowth may be a defense early in the second year of the life cycle in healthy trees.

Résumé

Le perceur du chêne rouge, Enaphalodes rufulus (Haldeman), est un coléoptère perceur indigène qui contribue beaucoup aux récents taux élevés de mortalité des chênes dans le nord de l’Arkansas. Nous avons réparti des chênes rouges, Quercus rubra L. (Fagaceae), en trois classes d’infestation par le perceur du chêne rouge d’après la condition de leur cime et le nombre de trous d’émergence du perceur du chêne sur la base du tronc, soit les classes I (peu d’épisodes d’infestation), II (infestation moyenne) et III (infestation forte). En 2004 et 2005, nous avons blessé mécaniquement des arbres de chacune des classes et avons mesuré la formation du bourrelet cicatriciel une année plus tard. Au cours des deux années, les arbres de classe I ont eu une production significativement plus grande de bourrelets que les arbres de classe III. Des mesures mensuelles au printemps et à l’été 2006 indiquent des différences significatives dans la formation des bourrelets dans les diverses classes; les arbres de classe I guérissent significativement plus tôt. Nous avons mesuré l’humidité dans des échantillons d’écorce prélevés une semaine et quatre semaines après le début de trois traitements expérimentaux, soit les conditions témoins, les blessures mécaniques et l’insertion artificielle des larves. Il n’y a pas de différences d’humidité entre les classes d’infestation, ni entre les divers traitements. Notre recherche indique que l’humidité de l’écorce n’est vraisemblablement pas un moyen de défense contre le perceur du chêne rouge et que la couverture par un bourrelet peut s’avérer être un moyen de défense tôt dans la seconde année du cycle biologique des arbres sains.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamski, J.C., Petersen, J.C., Freiwald, D.A., and Davis, J.V. 1995. Environmental and hydrologic setting of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma. Water Resources Investigative Report 94–4022, United States Geological Survey, Little Rock, Arkansas.Google Scholar
Anderson, R.F. 1944. The relation between host condition and attacks by the bronzed birch borer. Journal of Economic Entomology, 37: 588596.CrossRefGoogle Scholar
Barter, G.W. 1957. Survival and development of the bronze popular borer Agrilus liragus Barter & Brown (Coleoptera: Buprestidae). The Canadian Entomologist, 97: 10631068.CrossRefGoogle Scholar
Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle – fungus associations. BioScience, 22: 598602.CrossRefGoogle Scholar
Coyne, J.F., and Lott, L.H. 1976. Toxicity of substances in pine oleoresin to southern pine beetles. Journal of the Georgia Entomological Society, 11: 301305.Google Scholar
Donley, D.E. 1978. Oviposition by the red oak borer, Enaphalodes rufulus Coleoptera: Cerambycidae. Annals of the Entomological Society of America, 71: 496498.CrossRefGoogle Scholar
Donley, D.E., and Rast, E. 1984. Vertical distribution of the red oak borer, Enaphalodes rufulus (Coleoptera: Cerambycidae), in red oak. Environmental Entomology, 13: 4144.CrossRefGoogle Scholar
Dunn, J.P., Potter, D.A., and Kimmerer, T.W. 1990. Carbohydrate reserves, radial growth, and mechanisms of resistance of oak trees to phloem-boring insects. Oecologia, 83: 458468.CrossRefGoogle ScholarPubMed
Dwyer, J.P., Cutter, B.E., and Wetteroff, J.J. 1995. A dendrochronological study of black and scarlet oak decline in the Missouri Ozarks. Forest Ecology and Management, 75: 6975.CrossRefGoogle Scholar
Fenneman, N.M. 1938. Physiography of eastern United States. McGraw–Hill, Inc., New York. pp. 631661.Google Scholar
Fierke, M.K., and Stephen, F.M. 2007. Red oak borer (Coleoptera: Cerambycidae) flight trapping in the Ozark National Forest, Arkansas. Florida Entomologist, 90: 488494.CrossRefGoogle Scholar
Fierke, M.K., Kinney, D.L., Salisbury, V.B., Crook, D.J., and Stephen, F.M. 2005 a. A rapid estimation procedure for within-tree populations of red oak borer (Coleoptera: Cerambycidae). Forest Ecology and Management, 215: 163168.CrossRefGoogle Scholar
Fierke, M.K., Kinney, D.L., Salisbury, V.B., Crook, D.J., and Stephen, F.M. 2005 b. Development and comparison of intensive and extensive sampling methods and preliminary within-tree population estimates of red oak borer (Coleoptera: Cerambycidae) in the Ozark Mountains of Arkansas. Environmental Entomology, 34: 184192.CrossRefGoogle Scholar
Fierke, M.K., Kelley, M.B., and Stephen, F.M. 2007. Site and stand variables influencing red oak borer, Enaphalodes rufulus (Coleoptera: Cerambycidae), population densities and tree mortality. Forest Ecology and Management, 247: 227236.CrossRefGoogle Scholar
Franceschi, V.R., Krokene, P., Christiansen, E., and Krekling, T. 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist, 167: 353376.CrossRefGoogle ScholarPubMed
Fritts, H.C. 1960. Multiple regression analysis of radial growth in individual trees. Forest Science, 6: 334349.Google Scholar
Gottschalk, K.W., and MacFarlane, W.R. 1993. Photographic guide to crown condition of oaks: use for gypsy moth silvicultural treatments. General Technical Report NE-168, United States Department of Agriculture Forest Service, Northeastern Forest Experiment Station, Radnor, Pennsylvania.CrossRefGoogle Scholar
Haack, R.A., and Benjamin, D.M. 1982. The biology and ecology of the twolined chestnut borer, Agrilus bilineatus, on oaks, Quercus spp, in Wisconsin. The Canadian Entomologist, 114: 385395.CrossRefGoogle Scholar
Hanks, L.M., Paine, T.D., and Millar, J.G. 1991. Mechanisms of resistance in Eucalyptus against larvae of the eucalyptus longhorned borer (Coleoptera: Cerambycidae). Environmental Entomology, 20: 15831588.CrossRefGoogle Scholar
Hanks, L.M., Paine, T.D., Millar, J.G., Campbell, C.D., and Schuch, U.K. 1999. Water relations of host trees and resistance to the phloem-boring beetle Phoracantha semipunctata F. (Coleoptera: Cerambycidae). Oecologia, 119: 400407.CrossRefGoogle Scholar
Hay, C.J. 1969. The life history of a red oak borer and its behavior in red, black and scarlet oak. Proceedings of the North-Central Branch, Entomological Society of America, 24: 125128.Google Scholar
Hay, C.J. 1974. Survival and mortality of red oak borer larvae on black, scarlet, and northern red oak in eastern Kentucky. Annals of the Entomological Society of America, 67: 981986.CrossRefGoogle Scholar
Hodges, J.D., and Lorio, P.L. 1973. Comparison of oleoresin composition in declining and healthy loblolly pines. Research Note SO-158, United States Department of Agriculture Forest Service, Southern Forest Experiment Station, New Orleans, Louisiana.Google Scholar
Hodges, J.D., Elam, W.W., Watson, W.F., and Nebeker, T.E. 1979. Oleoresin characteristics and susceptibility of four southern pines to southern pine beetle (Coleoptera: Scolytidae) attacks. The Canadian Entomologist, 111: 889896.CrossRefGoogle Scholar
Keen, F.P. 1936. Relative susceptibility of ponderosa pines to bark-beetle attack. Journal of Forestry, 34: 919927.Google Scholar
Kozlowski, T.T., and Pallardy, S.G. 1997. Physiology of woody plants. 2nd ed. Academic Press, San Diego, California.Google Scholar
Kozlowski, T.T., and Winget, C.H. 1963. Patterns of water movement in forest trees. Botanical Gazette, 124: 301311.CrossRefGoogle Scholar
Kusumoto, D., and Suzuki, K. 2003. Spatial distribution and time-course of polyphenol accumulation as a defense response induced by wounding in the phloem of Chamaecyparis obtusa. New Phytologist, 195: 167173.CrossRefGoogle Scholar
Lorio, P.L. Jr., and Sommers, R.A. 1986. Evidence of competition for photosynthates between growth processes and oleoresin synthesis in Pinus taeda L. Tree Physiology, 2: 301306.CrossRefGoogle ScholarPubMed
McCune, B., and Grace, J.B. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
Mistretta, P.A., Affeltranger, C.E., Starkey, D.A., Covington, S.A., and Wortham, Z.M. 1981. Evaluation of oak mortality on the Ozark National Forest, Arkansas, 1981. United States Department of Agriculture Forest Service, Southeastern Area, State and Private Forestry, Atlanta, Georgia.Google Scholar
Nebeker, T.E., Hodges, J.D., and Blanche, C.A. 1993. Host response to bark beetle and pathogen colonization. In Beetle–pathogen interactions in conifer forests. Edited by Schowalter, T.D. and Filip, G.M.. Academic Press, New York. pp. 157173.Google Scholar
Neely, D. 1970. Healing of wounds on trees. Journal of the American Society for Horticultural Science, 95: 536540.CrossRefGoogle Scholar
Nichols, J.O. 1968. Oak mortality in Pennsylvania. Journal of Forestry, 66: 681688.Google Scholar
Paine, T.D., Raffa, K.F., and Harrington, T.C. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annual Review of Entomology, 42: 179206.CrossRefGoogle ScholarPubMed
Paine, T.D. 2002. Host tree resistance to woodboring insects. In Mechanisms and deployment of resistance in trees to insects. Edited by Wagner, M.R., Clancy, K.M., Lieutier, F., and Paine, T.D.. Kluwer Academic Publications, Dordrecht, the Netherlands. pp. 131136.CrossRefGoogle Scholar
SAS Institute Inc. 2005. JMP. Version 6.0 [computer program]. SAS Institute Inc., Cary, North Carolina.Google Scholar
Staley, J.M. 1965. Decline and mortality of red and scarlet oaks. Forest Science, 11: 217.Google Scholar
Starkey, D., Mangini, S., Oliveria, F., Clarke, S., Bruce, B., Kertz, R., and Menard, R. 2000. Forest health evaluation of oak mortality and decline on the Ozark National Forest, 1999. Forest Health Protection Report 2000–02–02, United States Department of Agriculture Forest Service, Alexandria, Louisiana.Google Scholar
Stephen, F.M., Salisbury, V.B., and Oliveria, F.L. 2001. Red oak borer, Enaphalodes rufulus (Coleoptera: Cerambycidae), in the Ozark Mountains of Arkansas U.S.A.: an unexpected and remarkable forest disturbance. Integrated Pest Management Reviews, 6: 247252.CrossRefGoogle Scholar
Stringer, J.W., Kimmerer, T.W., Overstreet, J.C., and Dunn, J.P. 1989. Oak mortality in eastern Kentucky. Southern Journal Applied Forestry, 13: 8691.CrossRefGoogle Scholar
Tainter, F.H., Fraedrich, S.W., and Benson, D.M. 1984. The effect of climate on growth, decline, and death of northern red oaks in the western North Carolina Nantahala Mountains. Castanea, 49: 127137.Google Scholar
Tryon, E.H., and True, R.P. 1958. Recent reductions in annual radial increments in dying scarlet oaks related to rainfall deficiencies. Forest Science, 4: 219230.Google Scholar
Wargo, P.M. 1978. Judging vigor of deciduous hardwoods. Agriculture Information Bulletin 418 United States Department of Agriculture.Google Scholar
Webb, J.W., and Franklin, R.T. 1978. Influence of phloem moisture on brood development of the southern pine beetle (Coleoptera: Scolytidae). Environmental Entomology, 7: 405410.CrossRefGoogle Scholar
Yeiser, J.L., and Burnett, F. 1982. Fate of forest trees stressed by heat and drought in southeastern Arkansas. Southern Journal Applied Forestry, 6: 194195.Google Scholar