Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T23:40:48.306Z Has data issue: false hasContentIssue false

CARABIDAE (COLEOPTERA) ASSOCIATED WITH GYPSY MOTH, LYMANTRIA DISPAR (L.) (LEPIDOPTERA: LYMANTRIIDAE), POPULATIONS SUBJECTED TO BACILLUS THURINGIENSIS BERLINER TREATMENTS IN PENNSYLVANIA

Published online by Cambridge University Press:  31 May 2012

E. Alan Cameron
Affiliation:
Department of Entomology, Penn State University, University Park, Pennsylvania, USA 16802
R. Marcel Reeves
Affiliation:
Department of Entomology, University of New Hampshire, Durham, New Hampshire, USA 03824

Abstract

Carabid beetles were collected using pitfall traps and tree bands in forest stands in southwestern Pennsylvania subjected to defoliation by gypsy moth for the first time. Some of the stands were treated aerially with Bacillus thuringiensis Berliner (B.t.). The guts of all carabids collected were tested for the presence of gypsy moth proteins using the ELISA technique. Twenty-seven of the 33 species (82%) collected from pitfall traps, and four of the seven species (57%) collected under tree bands, tested positive. Of the 1142 individuals from pitfall traps and 73 individuals from tree bands, the percentages positive were 45 and 38%, respectively. Calosoma frigidum Kirby had the highest percentage positive (78%) of any species. Statistically significant differences in percentages positive between B.t.-treated and untreated plots were found only for Pterostichus mutus Say and P. coracinus Newm., and when all species were combined. The presence of nucleopolyhedrosis virus in the gypsy moth population was unanticipated and may have influenced these results through increased feeding on carrion.

Résumé

Des carabes ont été échantillonnés à l’aide de pièges-fosse et d’annaux sur les arbres dans des peuplements forestiers du sud-ouest de la Pennsylvania sujets à la défoliation par la spongieuse pour la première fois. Certains des peuplements ont reçu un traitement aérien de Bacillus thuringiensis Berliner (B.t.). Les gésiers des carabes capturés ont été testés pour la présence de protéines de la spongieuse utilisant la technique ELISA. Vingt-sept des 33 espèces (82%) capturées dans les pièges-fosse et quatre des sept espèces (57%) capturées sous les annaux ont testé positif. Des 1142 individus provenant des pièges-fosse et 73 individus provenant des annaux, 45 et 38% ont testé positif, respectivement. Calosoma frigidum Kirby a enregistré la plus haute valeur de toutes les espèces (78% positif). Des différences statistiquement significatives dans le pourcentage des individus testant positif entre les parcelles traitées au B.t. et les parcelles témoins n’ont été observées que pour Pterostichus mutus Say et P. coracinus Newm., et lorsque toutes les espèces ont été combinées. La présence de virus nucléopolyèdres associés aux populations de spongieuse n’avait pas été anticipée et peut avoir influencé les résultats en augmentant la consommation de charogne.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burgess, A.F., and Collins, C.W.. 1917. The genus Calosoma: including studies of seasonal histories, habits, and economic importance of American species north of Mexico and several introduced species. U.S.D.A. Bur. Ent. Bull. 417. 124 pp.Google Scholar
Cameron, E.A., Loerch, C.R., and Evans, W.F.. 1983. Efficacy of Sevin FR against the gypsy moth (Lepidoptera: Lymantriidae). J. econ. Ent. 76: 869871.CrossRefGoogle Scholar
Campbell, R. W., and Sloan, R.J.. 1976. Influence of behavioral evolution of gypsy moth pupal survival in sparse populations. Environ. Ent. 5: 12111217.CrossRefGoogle Scholar
Campbell, R. W., and Sloan, R.J.. 1977. Natural regulation of innocuous gypsy moth populations. Environ. Ent. 6: 315322.CrossRefGoogle Scholar
Doane, C.C., and McManus, M.L.. 1981. The gypsy moth: research toward integrated pest management. U.S.D.A. For. Serv. Tech. Bull. 1584. Washington, DC. 757 pp.Google Scholar
Dunn, G.A., and Reeves, R.M.. 1980. A modified collecting net for catching insects under cloth bands on trees. Ent. News 91: 79.Google Scholar
Forbush, E.H., and Fernald, C.H.. 1896. The Gypsy Moth. Wright and Potter, Boston. 495 pp. plus appendices.Google Scholar
Pielou, E.C. 1974. Population and Community Ecology: Principles and Methods. Gordon and Breach Sci. Publ., New York. 424 pp.Google Scholar
Reeves, R.M. 1980. The use of barriers with pitfall traps. Ent. News 91: 1012.Google Scholar
Reeves, R.M., Dunn, G.A., and Jennings, D.T.. 1983. Carabid beetles associated with spruce budworm. Can. Ent. 115: 453472.CrossRefGoogle Scholar
Smith, H.R., and Lautenschlager, R.A.. 1978. Predators of the gypsy moth. USDA Agric. Handb. 534. 72 pp.Google Scholar
Sokal, R.R., and Rohlf, F.J.. 1969. Biometry. W.H. Freeman, San Francisco. 776 pp.Google Scholar
Vanderkooi, D.S. 1984. A survey of arthropod predators of gypsy moth, Lymantria dispar L., (Lepidoptera: Lymantriidae) using an enzyme-linked immunosorbent assay (ELISA). M.S. thesis, University of New Hampshire, Durham. 83 pp.Google Scholar
Voller, A., Bidwell, D.E., and Bartlett, A.. 1979. The Enzyme-linked Immunosorbent Assay (ELISA). Nuffield Laboratories of Comparative Medicine, London. 125 pp.Google Scholar
Weseloh, R.M. 1985 a. Changes in population size, dispersal behavior, and reproduction of Calosoma sycophanta (Coleoptera: Carabidae), associated with changes in gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae) abundance. Environ. Ent. 14: 370377.CrossRefGoogle Scholar
Weseloh, R.M. 1985 b. Predation by Calosoma sycophanta L. (Coleoptera: Carabidae): evidence for a large impact on gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae), pupae. Can. Ent. 117: 11171126.CrossRefGoogle Scholar
Weseloh, R.M. 1988. Prey preferences of Calosoma sycophanta L. (Coleoptera: Carabidae) larvae and relationship of prey consumption to predator size. Can. Ent. 120: 873880.CrossRefGoogle Scholar
Wilson, M.B., and Nakane, P.K.. 1978. Recent developments in the periodate method of conjugating horseradish peroxidase (HRPO) to antibodies. pp. 215224in Knapp, W., Holubar, K., and Wicks, G. (Eds.), Immunofluorescence and Related Staining Techniques. Elsevier/North-Holland Biomedical Press, Amsterdam, New York. pp. 215–224.Google Scholar
Wilson, R.W. Jr., and Fontaine, G.A.. 1978. Gypsy moth egg-mass sampling with fixed- and variable-radius plots. USDA Agric. Handb. 523. 46 pp.Google Scholar