Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T17:46:36.570Z Has data issue: false hasContentIssue false

CHARACTERIZATION OF HYDROPSYCHE SLOSSONAE (TRICHOPTERA: HYDROPSYCHIDAE) CAPTURE NET POLYPEPTIDES

Published online by Cambridge University Press:  31 May 2012

L. Tessier
Affiliation:
Département de chimie-biologie, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec, Canada G9A 5H7
J.L. Boisvert*
Affiliation:
Département de chimie-biologie, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec, Canada G9A 5H7
L.B-M. Vought
Affiliation:
Department of Ecology, University of Lund, Ecology Building, Lund, Sweden
J.O. Lacoursière
Affiliation:
Department of Ecology, University of Lund, Ecology Building, Lund, Sweden
*
1 Author to whom all corresponding should be addressed (E-mail: Jacques_Boisvert@uqtr.uquebec.ca).

Abstract

The aim of this study was to characterize polypeptide components of the capture net spun by trichopteran larvae Hydropsyche slossonae (Banks) (Trichoptera: Hydropsychidae). Thirty-one polypeptide bands were identified by SDS – polyacrylamide gel electrophoresis (SDS–PAGE) from extracted net material, with molecular weights ranging from 8500 to 179 000. Comparison with published data on Bombyx mori (L.) (Lepidoptera: Bombycidae) silk, treated under similar denaturing conditions, shows that six low molecular weight polypeptides ranging between 8500 and 18 800 in the silk of H. slossonae are absent from that of B. mori; furthermore, two high molecular weight polypeptides (210 000 and 220 000) detected in the silk of B. mori are not present in that of H. slossonae. Differences between both groups are probably related to their mode of living and to the specific use of silk (in air versus under water). Our findings are consistent with the current trend in the literature that silk spun by aquatic and terrestrial insects, as well as those spun by different species, is apparently made of different biopolymers according to the protein constituents. Hence, the polypeptide characterization of silk, combined with sequence data and (or) antibodies cross-reactivity data, could represent a potential tool for taxonomic classification improvement of aquatic insects. These results could eventually be used to characterize hydropsychid capture net anomalies induced by environmental pollution.

Résumé

Le but de cette étude était de caractériser la nature des polypeptides présents dans la soie des filets de capture tissés par les larves d’Hydropsyche slossonae (Banks) (Trichoptera : Hydropsychidae). Trente et un polypeptides ont été identifiés suite à une extraction du matériel contenu dans les filets de capture par la technique d’électrophorèse sur gel d’acrylamide (SDS–PAGE), les poids moléculaires de ceux-ci variant entre 8500 et 179 000. Une comparaison avec des données publiées sur la soie de Bombyx mori (L.) (Lepidoptera : Bombycidae), dans des conditions d’extraction similaires, a révélé que six polypeptides de faible poids moléculaire, variant entre 8500 et 18 800, présents dans la soie d’H. slossonae étaient absents au niveau de la soie de B. mori. De plus deux polypeptides de haut poids moléculaire (210 000 et 220 000) mis en évidence dans la soie de B. mori n’étaient pas présents au niveau de la soie d’H. slossonae. Ces divergences entre les deux groupes taxonomiques sont possiblement reliées aux différences notables entre leur mode de vie et leur utilisation spécifique de la soie (dans l’air et dans l’eau). Nos résultats confirment la tendance actuelle dans la littérature où il appert que la soie produite par les insectes aquatiques et terrestres, ainsi que celle tissée par différentes espèces, n’est apparemment pas constituée de biopolymères similaires, et ce à l’égard des analyses poly-peptidiques. Ainsi, l’établissement des patrons polypeptidiques au niveau de la soie, combiné à des analyses de séquence et (ou) des analyses de réaction croisée à l’aide d’anticorps, pourrait s’avérer un outil d’une grande utilité afin d’améliorer la classification taxonomique des insectes aquatiques. Ces résultats seront éventuellement utilisés afin de caractériser les anomalies observables sur les filets de capture des larves d’Hydropsyche spp. suite à une pollution environnementale chronique.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akai, H. 1971. Ultrastructure of fibroin in the silk gland of larval Bombyx mori. Experimental Cell Research 69: 219–23Google Scholar
Brockhouse, C.L., Vajime, C.G., Marin, R., Tanguay, R.M. 1993. Molecular identification of onchocerciasis vector sibling species in black flies (Diptera: Simulidae). Biochemical and Biophysical Research Communications 194: 628–34Google Scholar
Case, S.T., Thornton, J.R. 1999. High molecular mass complexes of aquatic silk proteins. International Journal of Biological Macromolecules 24: 89101CrossRefGoogle ScholarPubMed
Case, S.T., Powers, J., Hamilton, R., Burton, M.J. 1994. Silk and silk proteins from two aquatic insects. pp. 8090in Kaplan, D., Adams, W.W., Farmer, B., Viney, C. (Eds.), Silk polymers: materials science and biotechnology. Washington, DC: American Chemical SocietyGoogle Scholar
Craig, C.L. 1997. Evolution of arthropod silks. Annual Review of Entomology 42: 231–67CrossRefGoogle ScholarPubMed
Engster, M.S. 1976. Studies on silk secretion in the Trichoptera (F. Limnephilidae). II. Structure and amino acid composition of the silk. Cell and Tissue Research 169: 7792CrossRefGoogle Scholar
Glascow, J.P. 1936. Internal anatomy of a caddis (Hydropsyche colonica). Quarterly Journal of Microscopical Science 79: 151–79Google Scholar
Hunt, S. 1970. Polysaccharide-protein complexes in invertebrates. New York: Academic PressGoogle Scholar
Kielm, E., Röder, T. 1995. Gelelektrophoretische Untersuchungen des Labialdrüsensekrete verschiedener Simuliidae (Diptera). Verhandlungen der Deutschen Zoologischen Gesellschaft 88: 260Google Scholar
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680–5Google Scholar
Petersen, L.B.M. 1987. Field and laboratory studies on the biology of three species of Hydropsyche (Trichoptera; Hydropsychidae). Ph.D. dissertation, Department of Ecology and Limnology, University of Lund, Lund, SwedenGoogle Scholar
Petersen, L.B.M., Petersen, R.C. 1983. Anomalies in hydropsychid capture nets from polluted streams. Freshwater Biology 13: 185–91Google Scholar
Petersen, L.B.M., Petersen, R.C. 1984. Effect of kraft pulp effluent and 4,5,6-trichloroguiacol on the net spinning behavior of Hydropsyche angustipennis (Trichoptera). Ecological Bulletins 36: 6874Google Scholar
Rudall, K.M., Kenchington, W. 1971. Arthropods silk: the problem of fibrous proteins in animal tissues. Annual Review of Entomology 16: 7396Google Scholar
Sasaki, T., Noda, H. 1973 a. Studies on silk fibroin of Bombyx mori directly extracted from the silk gland. I. Molecular weight determination in guanidine hydrochloride or urea solutions. Biochemica et Biophysica Acta 310: 7690Google Scholar
Sasaki, T., Noda, H. 1973 b. Studies on silk fibroin of Bombyx mori directly extracted from the silk gland. II. Effect of reduction of disulphide bonds and subunit structure. Biochemica et Biophysica Acta 310: 91103Google Scholar
Sattler, W. 1958. Breiträge zur Kenntnis von Lebensweise und Körperbau der Larven und Puppe von Hydropsyche Pict. (Trichoptera) mit besonderer Berücksichtigung des Netzbaues. Zeitschrift fuer Morphologie und Oekologie der Tiere 47: 115–92CrossRefGoogle Scholar
Schuster, G.A., Etnier, D.A. 1978. A manual for the identification of the larvae of the caddisfly genera Hydropsyche Pictet and Symphitopsyche Ulmer in eastern and central North America (Trichoptera; Hydropsychidae). U.S. Environmental Protection Agency EPA-600/4-78-060Google Scholar
Shimura, K. 1983. IV. Chemical composition and biosynthesis of silk proteins. Experientia 39: 455–61Google Scholar
Shimura, K., Kikuchi, A., Ohtomo, K., Katagata, Y., Hyodo, A. 1976. Studies on silk fibroin of Bombyx mori. 1. Fractionation of fibroin prepared from the posterior silk gland. Journal of Biochemistry (Tokyo) 80: 693702CrossRefGoogle ScholarPubMed
Shimura, K., Kikuchi, A., Katagata, Y., Ohomoto, K. 1982. The occurrence of small component proteins in the cocoon fibroin of Bombyx mori. Journal of Sericultural Science of Japan 51: 20–6Google Scholar
Sinohara, Y., Asano, Y. 1967. Carbohydrate content of fibroin and sericin of the silkworm Bombyx mori. Journal of Biochemistry (Tokyo) 62: 129–30CrossRefGoogle Scholar
Sprague, K.U. 1975. The Bombyx mori silk proteins: characterization of large polypeptides. Biochemistry 14: 925–31Google Scholar
Tashiro, Y., Otshuki, E. 1970. Dissociation of native fibroin by sulphydryl compounds. Biochemica et Biophysica Acta 214: 265–71Google Scholar
Tessier, L., Boisvert, J., Vought, LB-M, Lacoursière, J.O. 1999. Anomalies on capture nets of Hydropsyche slossonae larvae (Trichoptera: Hydropsychidae) following a sublethal exposure to cadmium. Environmental Pollution. In pressGoogle Scholar
Tindall, A.R. 1960. The larval case of Triaenodes bicolor Curtis (Trichoptera: Leptoceridae). Proceedings of the Royal Entomological Society of London Series A 35: 93–6Google Scholar
Wallace, J.B. 1975. The larval retreat and food of Actopsyche with phylogenetic notes on feeding adaptations in Hydropsyche larvae (Trichoptera). Annals of the Entomological Society of America 68: 167–73Google Scholar
Wallace, J.B., Merritt, R.M. 1980. Filter-feeding ecology of aquatic insects. Annual Review of Entomology 25: 103–32CrossRefGoogle Scholar