Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T00:08:58.016Z Has data issue: false hasContentIssue false

Chlorantraniliprole impact on survival and progeny quality of the pupa of the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae)

Published online by Cambridge University Press:  16 November 2018

Kleber de Sousa Pereira*
Affiliation:
Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
Mateus Chediak
Affiliation:
Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
José Cola Zanuncio
Affiliation:
Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil Departamento de Entomologia, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, 36570-900, Viçosa, Minas Gerais, Brazil
Raul Narciso Carvalho Guedes
Affiliation:
Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
*
1Corresponding author (e-mail: kleberagrarias@yahoo.com.br)

Abstract

The insecticide chlorantraniliprole is recommended for integrated pest management programmes of caterpillar (Lepidoptera) pest species. This insecticide is considered harmless to parasitoids, but its selectivity may vary with the species of natural enemy, few of which were subjected to testing. Furthermore, in addition to the active ingredient, formulation adjuvants may improve insecticide efficiency, but also its impact on nontargeted organisms. Here the chlorantraniliprole effect and its interaction with adjuvant on the survival and qualitative parameters of progeny of the nontarget parasitoid Palmistichus elaeisis (Delvare and LaSalle) (Hymenoptera: Eulophidae) were studied. The treatments used were: chrolantraniliprole (T1), chlorantraniliprole+surfactant (T2), and deionised water (T3, control). Pupae of Diaphania hyalinata Linnaeus (Lepidoptera: Crambidae) were subjected to these treatments for 24 hours and offered to the adult parasitoids. Chlorantraniliprole and chlorantraniliprole+surfactant did not elicit direct toxicity to female parasitoids. However, chlorantraniliprole and its combination with surfactant reduced the head capsule width of the female progeny. This insecticide alone also reduced emergence and the progeny metatibia length. Chlorantraniliprole did not induce mortality of P. elaeisis adults, but its negative impact on the emergence and progeny size of this parasitoid suggests an important sublethal effect to be considered.

Type
Insect Management—Note
Copyright
© 2018 Entomological Society of Canada 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Christopher Cutler.

References

Agrofit. 2018. Sistema de agrotóxicos fitossanitários; Ministério da Agricultura, Abastecimento e Pecuária-MAPA [online]. Available from http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons [accessed 9 February 2018].Google Scholar
Ameri, M., Rasekh, A., Michaud, J., and Allahyari, H. 2013. Morphometric indicators for quality assessment in the aphid parasitoid, Lysiphlebus fabarum (Braconidae: Aphidiinae). European Journal of Entomology, 110: 519525.Google Scholar
Andrade, G.S., Sousa, A.H., Santos, J.C., Gama, F.C., Serrão, J.E., and Zanuncio, J.C. 2012. Oogenesis pattern and type of ovariole of the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae). Anais da Academia Brasileira de Ciências, 84: 767774.Google Scholar
Broughton, S., Harrison, J., and Rahman, T. 2014. Effect of new and old pesticides on Orius armatus (Gross)—an Australian predator of western flower thrips, Frankliniella occidentalis (Pergande). Pest Management Science, 70: 389397.Google Scholar
Brugger, K.E., Cole, P.G., Newman, I.C., Parker, N., Scholz, B., Suvagia, P., et al. 2010. Selectivity of chlorantraniliprole to parasitoid wasps. Pest Management Science, 66: 10751081.Google Scholar
Campos, M., Picanço, M., Martins, J., Tomaz, A., and Guedes, R. 2011. Insecticide selectivity and behavioral response of the earwig Doru luteipes . Crop Protection, 30: 15351540.Google Scholar
Carmo, E.D., Bueno, A., and Bueno, R. 2010. Pesticide selectivity for the insect egg parasitoid Telenomus remus . BioControl, 55: 455464.Google Scholar
Chichera, R.A., Pereira, F.F., Kassab, S.O., Barbosa, R.H., Pastori, P.L., and Rossoni, C. 2012. Capacidade de busca e reprodução de Trichospilus diatraeae e Palmistichus elaeisis (Hymenoptera: Eulophidae) em pupas de Diatraea saccharalis (Lepidoptera: Crambidae). Interciência, 37: 852856.Google Scholar
Cordova, D., Benner, E., Sacher, M., Rauh, J., Sopa, J., Lahm, G., et al. 2006. Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pesticide Biochemistry and Physiology, 84: 196214.Google Scholar
Coutellec, M-A., Delous, G., Cravedi, J-P., and Lagadic, L. 2008. Effects of the mixture of diquat and a nonylphenol polyethoxylate adjuvant on fecundity and progeny early performances of the pond snail Lymnaea stagnalis in laboratory bioassays and microcosms. Chemosphere, 73: 326336.Google Scholar
Cowles, R., Cowles, E., McDermott, A., and Ramoutar, D. 2000. “Inert” formulation ingredients with activity: toxicity of trisiloxane surfactant solutions to twospotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology, 93: 180188.Google Scholar
de Castro, A.A., Corrêa, A., Legaspi, J., Guedes, R., Serrão, J., and Zanuncio, J. 2013. Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae). Chemosphere, 93: 10431050.Google Scholar
de Castro, A.A., Poderoso, JCM., Ribeiro, R.C., Legaspi, J.C., Serrão, J.E., and Zanuncio, J.C. 2015. Demographic parameters of the insecticide-exposed predator Podisus nigrispinus: implications for IPM. BioControl, 60: 231239.Google Scholar
Delvare, G. and LaSalle, J. 1993. A new genus of Tetrastichinae (Hymenoptera: Eulophidae) from the Neotropical region, with the description of a new species parasitic on key pests of oil palm. Journal of Natural History, 27: 435444.Google Scholar
Desneux, N., Decourtye, A., and Delpuech, J-M. 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52: 81106.Google Scholar
Gil-Santana, H.R. and Tavares, M.T. 2006. Palmistichus elaeisis Delvare & LaSalle (Hymenoptera, Eulophidae): a new parasitoid of Dione juno juno (Cramer) (Lepidoptera, Nymphalidae). Revista Brasileira de Zoologia, 23: 891892.Google Scholar
Gonring, A., Picanço, M., Guedes, R., and Silva, E. 2003. Natural biological control and key mortality factors of Diaphania hyalinata (Lepidoptera: Pyralidae) in cucumber. Biocontrol Science and Technology, 13: 361366.Google Scholar
Gontijo, L.M., Celestino, D., Queiroz, O.S., Guedes, RNC., and Picanço, M.C. 2015. Impacts of azadirachtin and chlorantraniliprole on the developmental stages of pirate bug predators (Hemiptera: Anthocoridae) of the tomato pinworm Tuta absoluta (Lepidoptera: Gelechiidae). Florida Entomologist, 98: 5964.Google Scholar
Greene, G., Leppla, N., and Dickerson, W. 1976. Velvetbean caterpillar: a rearing procedure and artificial medium. Journal of Economic Entomology, 69: 487488.Google Scholar
Guillaume, R. and Boissot, N. 2001. Resistance to Diaphania hyalinata (Lepidoptera: Crambidae) in Cucumis species. Journal of Economic Entomology, 94: 719723.Google Scholar
Hannig, G.T., Ziegler, M., and Marçon, P.G. 2009. Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode of action groups. Pest Management Science, 65: 969974.Google Scholar
Huang, J., Wu, S-F., and Ye, G-Y. 2011. Evaluation of lethal effects of chlorantraniliprole on Chilo suppressalis and its larval parasitoid, Cotesia chilonis . Agricultural Sciences in China, 10: 11341138.Google Scholar
Larson, J.L., Redmond, C.T., and Potter, D.A. 2013. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns. Public Library of Science One, 8: e66375.Google Scholar
Liu, F., Zhang, X., Gui, Q-Q., and Xu, Q-J. 2012. Sublethal effects of four insecticides on Anagrus nilaparvatae (Hymenoptera: Mymaridae), an important egg parasitoid of the rice planthopper Nilaparvata lugens (Homoptera: Delphacidae). Crop Protection, 37: 1319.Google Scholar
McKee, F.R., Levac, J., and Hallett, R.H. 2009. Effects of foliar surfactants on host plant selection behavior of Liriomyza huidobrensis (Diptera: Agromyzidae). Environmental Entomology, 38: 13871394.Google Scholar
Pereira, F.F., Zanuncio, J.C., Serrão, J.E., Oliveira, H.N., Fávero, K., and Grance, E.L. 2009. Progeny of Palmistichus elaeisis Delvare & LaSalle (Hymenoptera: Eulophidae) parasitising pupae of Bombyx mori L.(Lepidoptera: Bombycidae) of different ages. Neotropical Entomology, 38: 660664.Google Scholar
Pereira, K., Guedes, NMP., Serrão, J.E., Zanuncio, J.C., and Guedes, RNC. 2017. Superparasitism, immune response and optimum progeny yield in the gregarious parasitoid Palmistichus elaeisis . Pest Management Science, 73: 11011109.Google Scholar
Picanço, M., Ribeiro, L.J., Leite, G.L., and Zanuncio, J.C. 1997. Seletividade de inseticidas a Podisus nigrispinus predador de Ascia monuste orseis . Pesquisa Agropecuária Brasileira, 32: 369372.Google Scholar
Pratissoli, D., Milanez, A.M., Barbosa, W.F., Celestino, F.N., Andrade, G.S., and Polanczyk, R.A. 2010. Side effects of fungicides used in cucurbitaceous crop on Trichogramma atopovirilia Oatman & Platner (Hymenoptera: Trichogramatidae). Chilean Journal of Agricultural Research, 70: 323327.Google Scholar
R Development Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from www.R-project.org [accessed 1 February 2018].Google Scholar
Reding, M.E. and Ranger, C.M. 2011. Systemic insecticides reduce feeding, survival, and fecundity of adult black vine weevils (Coleoptera: Curculionidae) on a variety of ornamental nursery crops. Journal of Economic Entomology, 104: 405413.Google Scholar
Rhainds, M. and Sadof, C. 2009. Control of bagworms (Lepidoptera: Psychidae) using contact and soil-applied systemic insecticides. Journal of Economic Entomology, 102: 11641169.Google Scholar
Rodrigues, A.C., Gravato, C., Quintaneiro, C., Golovko, O., Žlábek, V., Barata, C., et al. 2015. Life history and biochemical effects of chlorantraniliprole on Chironomus riparius . Science of the Total Environment, 508: 506513.Google Scholar
Smagghe, G., Deknopper, J., Meeus, I., and Mommaerts, V. 2013. Dietary chlorantraniliprole suppresses reproduction in worker bumblebees. Pest Management Science, 69: 787791.Google Scholar
Spanoghe, P., Van Eeckout, H., Van der Meeren, P., and Steurbaut, W. 2004. The effect of adjuvants on atomisation of pesticides. Atomization and Sprays, 14: 16. https://doi.org/10.1615/AtomizSpr.v14.i6.20.Google Scholar
Srinivasan, R., Hoy, M.A., Singh, R., and Rogers, M.E. 2008. Laboratory and field evaluations of Silwet L-77 and kinetic alone and in combination with imidacloprid and abamectin for the management of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Florida Entomologist, 91: 87100.Google Scholar
Visser, M.E. 1994. The importance of being large: the relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae). Journal of Animal Ecology, 63: 963978.Google Scholar
Yang, D-B., Zhang, L-N., Yan, X-J., Wang, Z-Y., and Yuan, H-Z. 2014. Effects of droplet distribution on insecticide toxicity to Asian corn borers (Ostrinia furnaealis) and spiders (Xysticus ephippiatus). Journal of Integrative Agriculture, 13: 124133.Google Scholar
Zanuncio, J.C., Pereira, F.F., Jacques, G.C., Tavares, M.T., and Serrão, J.E. 2008. Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae), a new alternative host to rear the pupae parasitoid Palmistichus elaeisis Delvare & LaSalle (Hymenoptera: Eulophidae). The Coleopterists Bulletin, 62: 6466.Google Scholar
Supplementary material: Image

de Sousa Pereira et al. supplementary material

Figure S1

Download de Sousa Pereira et al. supplementary material(Image)
Image 618 KB