Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T17:53:07.493Z Has data issue: false hasContentIssue false

COLD HARDINESS OF PHYTOSEIULUS PERSIMILIS ATHIAS-HENRIOT AND AMBLYSEIUS CUCUMERIS (OUDEMANS) (ACARINA: PHYTOSEIIDAE)

Published online by Cambridge University Press:  31 May 2012

W.D. Morewood
Affiliation:
Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2

Abstract

Aspects of cold hardiness of Phytoseiulus persimilis Athias-Henriot and Amblyseius cucumeris (Oudemans) were compared. Mean supercooling points (SCPs) ranged from −19.4 to −27.1°C and increased during development from egg to adult. Feeding status, diapause, and low temperature acclimation had little or no effect on supercooling capacity. Temperature/mortality curves confirmed that both species, including A. cucumeris in diapause, are freezing intolerant in the sense that the SCP represents the absolute limit to low temperature survival. However, the mites survived exposure to −12.5°C for less than 90 min. The results suggest that the SCP is directly related to body mass in these mites and that their ability to supercool is primarily a physical characteristic rather than an adaptation for survival of exposure to subzero temperatures.

Résumé

Certains aspects de la résistance au froid ont été étudiés chez Phytoseiulus persimilis Athias-Henriot et Amblyseius cucumeris (Oudemans). Le point de surfusion moyen (SCP) se situait entre −19,4 et −27,1°C et augmentait au cours du développement du stade oeuf au stade adulte. La condition alimentaire, la diapause ou l’acclimatation à une température froide avaient peu d’effet sur la capacité de surfusion ou n’en avaient pas du tout. Les courbes température/mortalité ont confirmé que l’une et l’autre espèces, même A. cucumeris pendant la diapause, sont intolérantes au gel dans la mesure où le point de surfusion représente la limite absolue de survie à des températures froides. Cependant, les acariens ont survécu à une exposition de moins de 90 min à −12,5°C. Ces résultats indiquent que le point de surfusion est directement relié à la masse corporelle chez ces acariens et que leur capacité de surfusion est avant tout une propriété physique plutôt qu’une adaptation qui permette aux animaux de survivre à des températures sous zéro.

[Traduit par la réduction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angell, C.A. 1982. Supercooled water. pp. 1–81 in Franks, F. (Ed.), Water: A Comprehensive Treatise, Vol. 7. Plenum Press, New York, NY. 484 pp.Google Scholar
Asahina, E. 1969. Frost resistance in insects. Advances in Insect Physiology 6: 149.Google Scholar
Bale, J.S. 1987. Insect cold hardiness: Freezing and supercooling — an ecophysiological perspective. Journal of Insect Physiology 33: 899908.CrossRefGoogle Scholar
Bale, J.S. 1991. Implications of cold hardiness for pest management. pp. 461–498 in Lee, R.E., and Denlinger, D.L. (Eds.), Insects at Low Temperature. Chapman and Hall, New York, NY. 513 pp.Google Scholar
Bale, J.S., Harrington, R., and Clough, M.S.. 1988. Low temperature mortality of the peach-potato aphid Myzus persicae. Ecological Entomology 13: 121129.CrossRefGoogle Scholar
Baust, J.G., and Nishino, M.. 1991. Freezing tolerance in the goldenrod gall fly (Eurosta solidaginis). pp. 260–275 in Lee, R.E., and Denlinger, D.L. (Eds.), Insects at Low Temperature. Chapman and Hall, New York, NY. 513 pp.Google Scholar
Baust, J.G., and Rojas, R.R.. 1985. Review — Insect cold hardiness: Facts and fancy. Journal of Insect Physiology 31: 755759.CrossRefGoogle Scholar
Block, W. 1981. Low temperature effects on micro-arthropods. Journal of Thermal Biology 6: 215218.CrossRefGoogle Scholar
Block, W. 1982. Cold hardiness in invertebrate poikilotherms. Comparative Biochemistry and Physiology 73A: 581592.CrossRefGoogle Scholar
Block, W., and Sømme, L.. 1982. Cold hardiness of terrestrial mites at Signy Island, maritime Antarctic. Oikos 38: 157167.CrossRefGoogle Scholar
Block, W., and Young, S.R.. 1979. Measurement of supercooling in small arthropods and water droplets. Cryo-Letters 1: 8591.Google Scholar
Brust, G.E., and House, G.J.. 1988. A study of Tyrophagus putrescentiae (Acari: Acaridae) as a facultative predator of southern corn rootworm eggs. Experimental and Applied Acarology 4: 335344.CrossRefGoogle Scholar
Butts, R.A. 1992. Cold hardiness and its relationship to overwintering of the Russian wheat aphid, Diuraphis noxia (Homoptera: Aphididae) in southern Alberta. Journal of Economic Entomology 85: 11401145.CrossRefGoogle Scholar
Cannon, R.J.C. 1983. Experimental studies on supercooling in two Antarctic micro-arthropods. Journal of Insect Physiology 29: 617724.CrossRefGoogle Scholar
Cannon, R.J.C. 1987. Effects of low-temperature acclimation on the survival and cold tolerance of an Antarctic mite. Journal of Insect Physiology 33: 509521.CrossRefGoogle Scholar
Cannon, R.J.C., and Block, W.. 1988. Cold tolerance of microarthropods. Biological Reviews of the Cambridge Philosophical Society 63: 2377.CrossRefGoogle Scholar
Chant, D.A. 1959. Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in southeastern England. Part II. A taxonomic review of the family Phytoseiidae, with descriptions of 38 new species. The Canadian Entomologist Supplement 12: 1166.Google Scholar
Chant, D.A. 1963. Some mortality factors and dynamics of orchard mites. Memoirs of the Entomological Society of Canada 32: 3340.CrossRefGoogle Scholar
Chant, D.A., and Yoshida-Shaul, E.. 1990. The identities of Amblyseius andersoni (Chant) and A. potentillae (Garman) in the family Phytoseiidae (Acari: Gamasina). International Journal of Acarology 16: 512.CrossRefGoogle Scholar
Duman, J.G. 1984. Change in overwintering mechanism of the cucujid beetle, Cucujus clavipes. Journal of Insect Physiology 30: 235239.CrossRefGoogle Scholar
Hamamura, T., Shinkaji, N., and Ashihara, W.. 1976. Studies on the hibernation of Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae). Bulletin of the Fruit Tree Research Station Series E (Akitsu) 1: 127133. [In Japanese, English summary.]Google Scholar
Helle, W., and Sabelis, M.W. (Eds.). 1985. Spider Mites: Their Biology, Natural Enemies and Control, Vol. 1B. Elsevier, New York, NY. 458 pp.Google Scholar
Herbert, H.J. 1962. Overwintering females and the number of generations of Typhlodromus (T.) pyri Scheuten (Acarina: Phytoseiidae) in Nova Scotia. The Canadian Entomologist 94: 233242.CrossRefGoogle Scholar
Horwath, K.L., and Duman, J.G.. 1984. Yearly variations in the overwintering mechanism of the cold hardy beetle Dendroides canadensis. Physiological Zoology 57: 4045.CrossRefGoogle Scholar
King, E.G., and Morrison, R.K.. 1984. Some systems for production of eight entomophagous arthropods. pp. 206–222 in King, E.G., and Leppla, N.C. (Eds.), Advances and Challenges in Insect Rearing. Agricultural Research Service (Southern Region), U.S. Department of Agriculture, New Orleans, LA. 306 pp.Google Scholar
Knight, J.D., and Bale, J.S.. 1986. Cold hardiness and overwintering of the grain aphid Sitobion avenae. Ecological Entomology 11: 189197.CrossRefGoogle Scholar
Knight, J.D., Bale, J.S., Franks, F., Mathias, S.F., and Baust, J.G.. 1986. Insect cold hardiness: Supercooling points and pre-freeze mortality. Cryo-Letters 7: 194203.Google Scholar
Knisley, C.B., and Swift, F.C.. 1971. Biological studies of Amblyseius umbraticus (Acarina: Phytoseiidae). Annals of the Entomological Society of America 64: 813822.CrossRefGoogle Scholar
Kukal, O., and Duman, J.G.. 1989. Switch in the overwintering strategy of two insect species and latitudinal differences in cold hardiness. Canadian Journal of Zoology 67: 825827.CrossRefGoogle Scholar
Lee, R.E. 1991. Principles of insect low temperature tolerance. pp. 17–46 in Lee, R.E., and Denlinger, D.L. (Eds.), Insects at Low Temperature. Chapman and Hall, New York, NY. 513 pp.CrossRefGoogle Scholar
Lee, R.E., and Denlinger, D.L.. 1985. Cold tolerance in diapausing and nondiapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiological Entomology 10: 309315.CrossRefGoogle Scholar
MacPhee, A.W. 1963. The effect of low temperatures on some predacious phytoseiid mites, and on the brown mite Bryobia arborea M. & A. The Canadian Entomologist 95: 4144.CrossRefGoogle Scholar
Messing, R.H., and Croft, B.A.. 1991. Biosystematics of Amblyseius andersoni and A. potentillae (Acarina: Phytoseiidae): Implications for biological control. Experimental and Applied Acarology 10: 267278.CrossRefGoogle Scholar
Morewood, W.D. 1989. Critical photoperiod for diapause induction in Amblyseius cucumeris (Acarina: Phytoseiidae). B.Sc. (Honours) thesis, University of Victoria, Victoria, B.C. 21 pp.Google Scholar
Morewood, W.D. 1991. Cold hardiness of Hyalophora euryalus kasloensis (Saturniidae) from the Okanagan Valley, British Columbia. Journal of the Lepidopterists’ Society 45: 236238.Google Scholar
Morewood, W.D., and Gilkeson, L.A.. 1991. Diapause induction in the thrips predator Amblyseius cucumeris [Acarina: Phytoseiidae] under greenhouse conditions. Entomophaga 36: 253263.CrossRefGoogle Scholar
O'Doherty, R. 1986. Cold hardiness of laboratory-maintained and seasonally-collected populations of the black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae). Bulletin of Entomological Research 76: 367374.CrossRefGoogle Scholar
O'Doherty, R., and Ring, R.A.. 1987. Supercooling ability of aphid populations from British Columbia and the Canadian Arctic. Canadian Journal of Zoology 65: 763765.CrossRefGoogle Scholar
Overmeer, W.P.J. 1985 a. Diapause. pp. 95–102 in Helle, W., and Sabelis, M.W. (Eds.), Spider Mites: Their Biology, Natural Enemies and Control, Vol. 1B. Elsevier, New York, NY. 458 pp.Google Scholar
Overmeer, W.P.J. 1985 b. Rearing and handling. pp. 161–170 in Helle, W., and Sabelis, M.W. (Eds.), Spider Mites: Their Biology, Natural Enemies and Control, Vol. 1B. Elsevier, New York, NY. 458 pp.Google Scholar
Ramakers, P.M.J., and van Lieburg, M.J.. 1982. Start of commercial production and introduction of Amblyseius mckenziei Sch. & Pr. (Acarina: Phytoseiidae) for the control of Thrips tabaci Lind. (Thysanoptera: Thripidae) in glasshouses. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 47: 541545.Google Scholar
Rickards, J., Kelleher, M.J., and Storey, K.B.. 1987. Strategies of freeze avoidance in larvae of the goldenrod gall moth Epiblema scudderiana: Winter profiles of a natural population. Journal of Insect Physiology 33: 443450.CrossRefGoogle Scholar
Ring, R.A. 1980. Insects and their cells. pp. 187–217 in Ashwood-Smith, M.J., and Farrants, J. (Eds.), Low Temperature Preservation in Medicine and Biology. Pitman Medical Publishing, Tunbridge Wells, England. 323 pp.Google Scholar
Sabelis, M.W. 1981. Biological control of two-spotted spider mites using phytoseiid predators. Part I. Modelling the predator-prey interaction at the individual level. Agricultural Research Reports 190, Pudoc, Wageningen, The Netherlands. 242 pp.Google Scholar
Salt, R.W. 1950. Time as a factor in the freezing of undercooled insects. Canadian Journal of Research 28D: 285291.CrossRefGoogle Scholar
Salt, R.W. 1953. The influence of food on cold hardiness of insects. The Canadian Entomologist 85: 261269.CrossRefGoogle Scholar
Salt, R.W. 1961. Principles of insect cold-hardiness. Annual Review of Entomology 6: 5574.CrossRefGoogle Scholar
Salt, R.W. 1966 a. Factors influencing nucleation in supercooled insects. Canadian Journal of Zoology 44: 117133.CrossRefGoogle Scholar
Salt, R.W. 1966 b: Effect of cooling rate on the freezing temperatures of supercooled insects. Canadian Journal of Zoology 44: 655659.CrossRefGoogle Scholar
Salt, R.W. 1966 c. Relation between time of freezing and temperature in supercooled larvae of Cephus cinctus Nort. Canadian Journal of Zoology 44: 947952.CrossRefGoogle Scholar
Salt, R.W. 1968. Location and quantitative aspects of ice nucleators in insects. Canadian Journal of Zoology 46: 329333.CrossRefGoogle Scholar
Sømme, L. 1982. Supercooling and winter survival in terrestrial arthropods. Comparative Biochemistry and Physiology 73A: 519543.CrossRefGoogle Scholar
Stenseth, C. 1965. Cold hardiness in the two-spotted spider mite (Tetranychus urticae Koch). Entomologia Experimentalis et Applicata 8: 3338.CrossRefGoogle Scholar
Storey, K.B., and Storey, J.M.. 1988. Freeze tolerance in animals. Physiological Reviews 68: 2784.CrossRefGoogle ScholarPubMed
Turnock, W.J., Jones, T.H., and Reader, P.M.. 1985. Effects of cold stress during pupal diapause on the survival and development of Delia radicum (Diptera: Anthomyiidae) in England. Oecologia 67: 506510.CrossRefGoogle Scholar
Turnock, W.J., Lamb, R.J., and Bodnaryk, R.P.. 1983. Effects of cold stress during pupal diapause on the survival and development of Mamestra configurata (Lepidoptera: Noctuidae). Oecologia 56: 185192.CrossRefGoogle ScholarPubMed
Van der Geest, L.P.S., Overmeer, W.P.J., and van Zon, A.Q.. 1991. Cold-hardiness in the predatory mite Amblyseius potentillae (Acari: Phytoseiidae). Experimental and Applied Acarology 11: 167176.CrossRefGoogle Scholar
Wysoki, M. 1974. Studies on diapause and the resistance to low temperatures of a predacious mite, Phytoseius finitimus (Mesostigmata, Phytoseiidae). Entomologia Experimentalis et Applicata 17: 2230.CrossRefGoogle Scholar
Young, S.R., and Block, W.. 1980. Experimental studies on the cold tolerance of Alaskozetes antarcticus. Journal of Insect Physiology 26: 189200.CrossRefGoogle Scholar
Zachariassen, K.E. 1982. Nucleating agents in cold-hardy insects. Comparative Biochemistry and Physiology 73A: 557562.CrossRefGoogle Scholar
Zachariassen, K.E. 1985. Physiology of cold tolerance in insects. Physiological Reviews 65: 799832.CrossRefGoogle ScholarPubMed
Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ. 718 pp.Google Scholar