Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T17:52:18.891Z Has data issue: false hasContentIssue false

Comparative activity of three isolates of LdMNPV against two strains of Lymantria dispar

Published online by Cambridge University Press:  02 April 2012

Peter M. Ebling*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
Imre S. Otvos
Affiliation:
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
Nicholas Conder
Affiliation:
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
*
1Corresponding author (e-mail: pebling@nrcan.gc.ca).

Abstract

Two newly identified geographic isolates of a nucleopolyhedrovirus (LdMNPV-H and LdMNPV-J) were evaluated against Disparvirus (LdMNPV-D), a baculovirus insecticide registered in Canada for the control of gypsy moth (Lymantria dispar (L.) (Lepidoptera: Lymantriidae)). Profiles of HindIII and EcoRI restriction enzyme digests of viral DNA from the three viral isolates are presented. Viral isolates were bioassayed using an inoculated diet plug method to determine the dose- and time-responses of second-instar larvae of both the European and Asian strains of gypsy moth. LdMNPV-D was found to be the most virulent isolate when tested against the European strain of gypsy moth, yielding an LD50 and an LD95 (estimates of the doses required to kill 50% and 95% of the test larvae, respectively) of 95 and 774 occlusion bodies (OBs), respectively. LdMNPV-H was the most virulent isolate when tested against the Asian strain, yielding an LD50 and an LD95 of 648 and 8540 OBs, respectively. Time-response data indicate that the three isolates differ little with respect to their speed of kill (ST50; estimate of the length of time required to kill 50% of the test insects) of either larval strain. These results indicate that both new isolates (LdMNPV-H and LdMNPV-J) should be investigated further for control of the Asian strain of the gypsy moth but not pursued for control of the European strain.

Résumé

Nous évaluons deux souches géographiques récemment identifiées du virus de la polyédrose nucléaire (LdMNPV-H et LdMNPV-J) par comparaison au Disparvirus (LdMNPV-D), un insecticide à base de baculovirus homologué au Canada pour la lutte contre la spongieuse (Lymantria dispar (L.) (Lepidoptera: Lymantriidae)). Nous présentons les profils des produits de digestion de l'ADN viral des trois souches de virus par les enzymes de restriction HindIII et EcoRI. Nous avons fait des bioessais avec les souches virales au moyen de la méthode d'inoculation de pastilles alimentaires pour déterminer les réactions en fonction du temps et de la dose des larves de second stade des races européenne et asiatique de la spongieuse. LdMNPV-D est la souche la plus virulente contre la race européenne de la spongieuse, avec des LD50 et LD95 (estimation des doses respectives nécessaires pour tuer 50 % et 95 % des larves testées) respectivement de 95 et 774 OB (corps d'occlusion). LdMNVP est la souche la plus virulente contre la race asiatique de spongieuse, avec des LD50 et LD95 respectivement de 648 et de 8540 OB. Les réactions en fonction du temps indiquent que les trois souches diffèrent très peu dans le temps requis pour tuer (ST50, estimation du temps nécessaire pour tuer 50 % des larves testées) l'une ou l'autre des races de larves. Ces résultats indiquent que les deux souches nouvelles (LdMNPV-H et LdMNPV-J) devraient être étudiées davantage en vue de la lutte contre la race asiatique de la spongieuse, mais non contre la race européenne.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, R.A., Owens, C.D., Shapiro, M., Tardif, J.R. 1981. The development of mass-rearing technology. pp 599655in Doan, C.C., McManus, M.L. (Eds), The gypsy moth: research toward integrated pest management. US Department of Agriculture Technical Bulletin 1584Google Scholar
Bliss, C.I. 1937. The calculation of the time-mortality curve. Annals of Applied Biology 24: 815–52Google Scholar
Burges, H.D., Thomson, E.M. 1971. Standardization and assay of microbial insecticides. pp 591622in Burges, H.D., Hussy, N.W. (Eds), Microbial control of insects and mites. New York: Academic PressGoogle Scholar
Cunningham, J.C. 1995. Baculoviruses as microbial insecticides. pp 261–92 in Reuveni, R. (Ed), Novel approaches to integrated pest management. Boca Raton, Florida: CRC PressGoogle Scholar
Cusack, T., McCarthy, W.J. 1989. Serial passage on genetic homogeneity of a plaque variant of Lymantria dispar nuclear polyhedrosis virus (Hamden LDP-67). Journal of General Virology 70: 2963–72Google Scholar
Doane, C.C. 1970. Primary pathogens and their role in the development of an epizootic in the gypsy moth. Journal of Invertebrate Pathology 15: 21–3Google Scholar
Dougherty, E.M. 1983. A comparison of the Gypchek and VIRIN-ENSh preparations of a multiple embedded nuclear polyhedrosis virus of the gypsy moth, Lymantria dispar utilizing restriction endonuclease analysis. pp 2130in Ignoffo, C.M., Martignoni, M.E., Vaughn, J.L. (Eds), A comparison of the US (GYPCHEK) and USSR (VIRIN-ENSh) preparations of the nuclear polyhedrosis virus of the gypsy moth, Lymantria dispar: results of research conducted under Project V-01.0705, Microbial Control of Insect Pests, of the US/USSR Joint Working Group on the Production of Substances by Microbiological MeansGoogle Scholar
Ebling, P.M., Kaupp, W.J. 1997. Pathogenicity of a nuclear polyhedrosis virus to forest tent caterpillar, Malacosoma disstria (Hübner) (Lepidoptera: Lasiocampidae). The Canadian Entomologist 129: 195–6CrossRefGoogle Scholar
Ebling, P.M., Barrett, J.W., Arif, B.M. 1998. Pathogenicity of the Ireland strain of nuclear polyhedrosis virus to spruce budworm, Choristoneura fumiferana, larvae. The Canadian Entomologist 130: 107–8Google Scholar
Hughes, P.R., Wood, H.A., Burand, J.P., Granados, R.R. 1984. Quantitation of dose-mortality response of Trichoplusia ni, Heliothis zea, and Spodoptera frugiperda nuclear polyhedrosis virus: applicability of an exponential model. Journal of Invertebrate Pathology 43: 343–50Google Scholar
Ignoffo, C.M., Shapiro, M. 1978. Characteristics of baculovirus preparations processed from living and dead larvae. Journal of Economic Entomology 7: 186Google Scholar
Kremar-Nozic, E., Wilson, B., Arthur, L. 2000. The potential impacts of exotic forest pests in North America: a synthesis of research. Canadian Forestry Service, Pacific Forest Research Centre Information Report BC-X-387Google Scholar
Kuzio, J., Pearson, M.N., Harwood, S.H., Funk, C.J., Evans, J.T., Slavicek, J.M., Rohrmann, G.F. 1999. Sequence and analysis of the genome of a baculovirus pathogenic for Lymantria dispar. Virology 253: 1734CrossRefGoogle ScholarPubMed
LeOra Software. 1994. POLO-PC: a user's guide to Probit Or LOgit analysis. Berkeley, California: LeOra SoftwareGoogle Scholar
McCarthy, W.J., Murphy, T.F., Langridge, W. 1979. Characteristics of the DNA from Lymantria dispar nuclear polyhedrosis virus. Virology 95: 593–7Google Scholar
Reardon, R., Podgwaite, J. 1992. The gypsy moth virus product. US Department of Agriculture Forest Service NA-TP-02-92. Appalachian Integrated Pest ManagementGoogle Scholar
Reiff, W. 1911. The wilt disease or flacherie of the gypsy moth. Contribution 36. Cambridge, Massachusetts: Entomological Laboratory, Bussey Institution, Harvard UniversityCrossRefGoogle Scholar
Riegel, C.I., Lanner-Herrera, C., Slavicek, M. 1994. Identification and characterization of the ecdysteroid UDP-glucosyltransferase gene of the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus. Journal of General Virology 75: 829–38Google Scholar
Robertson, J.L., Preisler, H.K. 1992. Pesticide bioassays with arthropods. London: CRC PressGoogle Scholar
Sambrook, J., Fritsch, E.F., Maniatis, T. (Editors). 1989. Molecular cloning: a laboratory manual. Appendix E. Commonly used techniques in molecular cloning. 2nd edition. New York: Cold Spring Harbor Laboratory PressGoogle Scholar
Sampford, M.R. 1952. The estimation of response-time distributions. I. Fundamental concepts and general methods. Biometrics 8: 1332CrossRefGoogle Scholar
Shapiro, M. 1983. Comparative infectivity of Gypchek L-79 and VIRIN-ENSh to Lymantria dispar. pp 3842in Ignoffo, C.M., Martignoni, M.E., Vaughn, J.L. (Eds), A comparison of the US (GYPCHEK) and USSR (VIRIN-ENSh) preparations of the nuclear polyhedrosis virus of the gypsy moth, Lymantria dispar: results of research conducted under Project V-01.0705, Microbial Control of Insect Pests, of the US/USSR Joint Working Group on the Production of Substances by Microbiological MeansGoogle Scholar
Shapiro, M., Bell, R.A. 1981. Biological activity of Lymantria dispar nucleopolyhedrosis virus from living and virus-killed larvae. Annals of the Entomological Society of America 74: 27–8Google Scholar
Shapiro, M., Owens, C.D., Bell, R.A., Wood, H.A. 1981. Simplified, efficient system for in vivo mass production of gypsy moth nucleopolyhedrosis virus. Journal of Economic Entomology 74: 341–3Google Scholar
Shapiro, M., Robertson, J.L., Bell, R.A. 1986. Quantitative and qualitative differences in gypsy moth (Lepidoptera: Lymantriidae) nucleopolyhedrosis virus produced in different-aged larvae. Journal of Economic Entomology 79: 1174–7Google Scholar
Stiles, B., Burand, J.P., Meda, M., Wood, H.A. 1983. Characterization of gypsy moth (Lymantria dispar) nuclear polyhedrosis virus. Applied and Environmental Microbiology 46: 297303CrossRefGoogle ScholarPubMed
Tompkins, G.J., Vaughn, J.L., Adams, J.R., Reichelderfer, C.F. 1981. Effects of propagating Autographa californica nuclear polyhedrosis virus and its Trichoplusia ni variant in different hosts. Environmental Entomology 10: 801–6Google Scholar
van Beek, N.A.M., Hughes, P.R. 1998. Minireview: the response time of insect larvae infected with recombinant baculoviruses. Journal of Invertebrate Pathology 72: 338–47CrossRefGoogle Scholar
van Beek, N.A.M., Wood, H.A., Angellotti, J.E., Hughes, P.R. 1988 a. Rate of increase and critical amount of nuclear polyhedrosis virus in lepidopterous larvae estimated from survival time assay with a birth-death model. Archives of Virology 100: 5160CrossRefGoogle ScholarPubMed
van Beek, N.A.M., Wood, H.A., Hughes, P.R. 1988 b. Quantitative aspects of nuclear polyhedrosis infections in lepidopterous larvae: The dose-survival relationship. Journal of Invertebrate Pathology 51: 5863CrossRefGoogle Scholar
ViStat. 1991. Statistical package for the analysis of baculovirus bioassay data [computer program]. Ithaca, New York: Boyce Thompson Institute, Cornell UniversityGoogle Scholar
Wigley, P.J. 1980. Counting micro-organisms. pp 2935in Kalmakoff, J., Longworth, J.F. (Eds), Microbial control of insect pests. New Zealand Department of Scientific and Industrial Research Bulletin 228Google Scholar