Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T18:01:49.715Z Has data issue: false hasContentIssue false

COMPARISON OF MALE AND FEMALE RESPONSES TO DICOFOL IN EUROPEAN RED MITE, PANONYCHUS ULMI (KOCH), USING A RAPID ASSAY TECHNIQUE

Published online by Cambridge University Press:  31 May 2012

B.K. Mable
Affiliation:
Agriculture Canada Research Station, Box 6000, Vineland Station, Ontario, Canada L0R 2E0
D.J. Pree
Affiliation:
Agriculture Canada Research Station, Box 6000, Vineland Station, Ontario, Canada L0R 2E0
T.A. Denbesten
Affiliation:
Agriculture Canada Research Station, Box 6000, Vineland Station, Ontario, Canada L0R 2E0

Abstract

Concentration:response regressions were established for male and female Panonychus ulmi from dicofol resistant and susceptible laboratory colonies using a rapid assay technique which utilizes pesticide residues in enclosed Petri dishes. Modification of the technique, which was developed for females, allowed reproducible results with males. Males and females from the resistant population showed similar levels of resistance compared with the susceptible population (ca. 4-fold). Within populations, males were approximately 3-fold more sensitive than females. Implications of these differences for field populations and the usefulness of males in inheritance studies are discussed.

Résumé

Les régressions concentration : réaction ont été établies dans le cas de mâles et de femelles de Panonychus ulmi provenant de colonies de laboratoire résistantes ou sensibles; les insectes ont été soumis à un test expérimental rapide au cours duquel ils étaient exposés à des résidus de pesticide dans des boîtes de pétri fermées. Une modification de la technique, mise au point pour tester des femelles, a permis d’obtenir des résultats valides chez des mâles. Les mâles et les femelles de la population résistante étaient environ quatre fois plus résistants au produit que les individus de la population sensible. Au sein de chaque population, les mâles étaient environ trois fois plus sensibles que les femelles. L’importance de ces différences chez les populations naturelles et la possibilité d’utiliser des mâles dans les études d’hérédité font l’objet d’une discussion.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andres, L.A., and Prout, T.. 1960. Selection response and genetics of parathion resistance in the pacific spider mite, Tetranychus pacificus. J. econ. Ent. 53: 626630.CrossRefGoogle Scholar
Ballantyne, G.H. 1969. Genetic fine structure and complementation at the albino locus in spider mites (Tetranychus species: Acarina). Genetica 40: 289323.CrossRefGoogle Scholar
Cranham, J.E., and Helle, W.. 1985. Pesticide resistance in Tetranychidae. pp. 405421in Helle, W., and Sabelin, M.W. (Eds.), World Crop Pests Vol. 1B Spider Mites: Their Biology, Natural Enemies and Control. Chapter 3.4. Elsevier Science Publishing Co., Inc., New York, NY.Google Scholar
Croft, B.A., Miller, R.W., Nelson, R.D., and Westigard, P.H.. 1984. Inheritance of early-stage resistance to formetanate and cyhexatin in Tetranychus urticae Koch. in Australia. J. Aust. ent. Soc. 21: 198.Google Scholar
Dennehy, T.J., Grafton-Caldwell, E.F., Granett, J., and Barbour, K.. 1987. Practitioner-assessable bioassay for detection of dicofol resistance in spider mites (Acari: Tetranychidae). J. econ. Ent. 80: 9981003.CrossRefGoogle Scholar
Dennehy, T.J., Nyrop, J.P., and Reissig, W.H.. 1988. Characterization of resistance to dicofol in spider mites (Acari: Tetranychidae) from New York apple orchards. J. econ. Ent. 81: 15511561.Google Scholar
Dittrich, V. 1969. The expression of resistance against organophosphates in the Leverkusen-R strains of Tetranychus urticae Koch and its genetical implications. Sonderdruck aus Bd. 63: 285300.Google Scholar
Helle, W., and Bolland, H.R.. 1967. Karyotypes and sex-determination in spider mites (Tetranychidae). Genetica 38: 4353.CrossRefGoogle Scholar
Herne, D.C. 1971. Methodology for assessing resistance in the European red mite. Proceedings of the Third International Congress of Acarology, Prague. pp. 663667.Google Scholar
Hoyt, S.C., Westigard, P.H., and Croft, B.A.. 1985. Cyhexatin resistance in Oregon populations of Tetranychus urticae Koch. J. econ. Ent. 81: 5764.Google Scholar
Jeppson, L.R., Keifer, H.H., and Baker, E.W.. 1975. Mites Injurious to Economic Plants. University of California Press, Berkeley, Los Angeles, CA. 614 pp.CrossRefGoogle Scholar
Martinson, T.E., Nyrop, J.P., Dennehy, T.J., and Reissig, W.H.. 1991 a. Field measurements of selection for European red mite (Acari: Tetranychidae) resistance to dicofol in apple orchards. J. econ. Ent. 84: 16.CrossRefGoogle Scholar
Martinson, T.E., Nyrop, J.P., Dennehy, T.J., and Reissig, W.H.. 1991 b. Field measurements of selection for two-spotted spider mite (Acari: Tetranychidae) resistance to dicofol in apple orchards. J. econ. Ent. 84: 716.CrossRefGoogle Scholar
Overmeer, W.P.J., and van Zon, A.Q.. 1973. Genetics of dicofol resistance in Tetranychus urticae Koch (Acari: Tetranychidae). Z. angew. Ent. 73: 225230.CrossRefGoogle Scholar
Pree, D.J. 1987. Inheritance and management of cyhexatin and dicofol resistance in the European red mite (Acari: Tetranychidae). J. econ. Ent. 80: 11061112.CrossRefGoogle Scholar
Pree, D.J. 1990. Resistance management in multiple pest apple orchard ecosystems in Eastern North America. pp. 261–276 in Roush, R.T., and Tabashnik, B.E. (Eds.), Pesticide Resistance in Arthropods. Chapman and Hall, New York, NY. pp. 261276.CrossRefGoogle Scholar
Pree, D.J., Cole, K.J., and Fisher, P.A.. 1989. Comparison of leaf-disc and Petri dish assays for the assessment of dicofol resistance in populations of European red mite from Southern Ontario. Can. Ent. 121: 771776.Google Scholar
Pree, D.J., and Wagner, H.W.. 1987. Occurrence of cyhexatin and dicofol resistance in the European red mite, Panonychus ulmi (Koch) (Acari: Tetranychidae) in Southern Ontario. Can. Ent. 119: 287290.CrossRefGoogle Scholar
Rizzieri, D.A., Dennehy, T.J., and Glover, T.J.. 1988. Genetic analysis of dicofol resistance in two populations of two-spotted spider mite from New York apple orchards. J. econ. Ent. 81: 12711276.CrossRefGoogle Scholar
Schulten, G.G.M. 1968. Genetics of organophosphate resistance in the two-spotted spider mite (Tetranychus urticae Koch). Publ. R. Trop. Inst., Amsterdam, Netherlands 57: 157.Google Scholar
van Zon, A.Q., and Helle, W.. 1966. A search for linkage between genes for albinism and parathion resistance in Tetranychus pacificus McGregor. Genetica 37: 181185.CrossRefGoogle Scholar
Welty, C., Reissig, W.H., Dennehy, T.J., and Weires, R.W.. 1987. Cyhexatin resistance in New York populations of European red mite (Acari: Tetranychidae). J. econ. Ent. 80: 230236.CrossRefGoogle Scholar
Welty, C., Reissig, W.H., Dennehy, T.J., and Weires, R.W.. 1989. Stability of cyhexatin resistance in field populations of European red mite (Acari: Tetranychidae). J. econ. Ent. 82: 692697.Google Scholar