Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T23:40:03.287Z Has data issue: false hasContentIssue false

Control of Plodia interpunctella (Lepidoptera: Pyralidae), a pest in Bombus terrestris (Hymenoptera: Apidae) colonies

Published online by Cambridge University Press:  02 April 2012

Yong Jung Kwon
Affiliation:
Department of Agricultural Biology, Kyungpook National University, Taegu 702–701 Korea
Shafqat Saeed*
Affiliation:
Entomological Research Sub-Station, Old Shujabad Road, Multan, Pakistan
Marie José Duchateau
Affiliation:
Behavioural Biology, University of Utrecht, PO Box 80.086, Utrecht, 3508 TB the Netherlands
*
1 Corresponding author (e-mail: bumblebeepak@hotmail.com).

Abstract

The bumble bee Bombus terrestris L. is an important pollinator of commercial crops. Mass-rearing of bumble bees under controlled conditions is susceptible to pest outbreaks such as the Indian meal moth, Plodia interpunctella L. This study showed that pollen collected from pollen traps at honey bee colonies can be contaminated with eggs of the Indian meal moth and that the eggs can hatch under bumble bee rearing conditions. Storage of pollen at −60 °C for more than 3 weeks can prevent an infestation of P. interpunctella in bumble bee colonies via pollen. Storage at −20 °C is less effective. Although P. interpunctella larvae slightly prefer pollen as their food source, they also feed on bumble bee pupae, especially when little pollen is present in a bumble bee colony. Spraying with the microbial insect pathogen Bacillus thuringiensis Aizawai at a concentration of 1 g/L water can control P. interpunctella (99.8% mortality) without harm to the bumble bee colonies. Higher concentrations have a negative impact on bumble bee colonies. Other B. thuringiensis strains, Kurstaki and Kurstaki Plus, are less effective.

Résumé

Le bourdon Bombus terrestris L. est un pollinisateur important des récoltes commerciales. L'élevage massif de bourdons en conditions contrôlées peut donner lieu à des épidémies de ravageurs, tels que la pyrale indienne de la farine, Plodia interpunctella L. Notre étude démontre que le pollen récolté dans les pièges à pollen de colonies d'abeilles peut être contaminé par des oeufs de la pyrale indienne de la farine et que ces oeufs peuvent éclore dans les conditions d'élevage des bourdons. L'entreposage du pollen à −60 °C pendant plus de 3 semaines peut prévenir l'infestation des colonies de bourdons par P. interpunctella; un entreposage à −20 °C est moins efficace. Bien que les larves de P. interpunctella aient une faible préférence pour le pollen comme source de nourriture, ils se nourrissent aussi de nymphes de bourdons, particulièrement lorsqu'il y a peu de pollen dans la colonie de bourdons. La vaporisation de l'agent pathogène des insectes, Bacillus thuringiensis Aizawai, à une concentration de 1 g/L d'eau peut contrôler P. interpunctella (99,8 % de mortalité) sans endommager les colonies de bourdons; les concentrations plus fortes ont cependant un effet négatif. D'autres lignées de B. thuringiensis, telles que Kurstaki et Kurstaki Plus, sont moins efficaces.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, R. 1981. A guide to honey bee management in Pakistan. Pakistan Agricultural Research Council Miscellaneous Publication. Islamabad: Pakistan Agricultural Research CouncilGoogle Scholar
Alford, D.V. 1975. Bumble bees. London: Davis-PoytnerGoogle Scholar
Aronsol, A.L., Han, E., McGaughey, W.H., Johnson, D.E. 1991. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Applied and Environmental Microbiology 57: 981–6CrossRefGoogle Scholar
Arthur, F., Johnson, H.L. 1995. Development of aeration plans based on weather data: a model for management of corn stored in Georgia. American Entomologist 41: 241–6CrossRefGoogle Scholar
Caron, D.M. 1992. Wax moth. American Bee Journal 132: 647–9Google Scholar
Colter, D. 1994. Those pesky wax moth. American Bee Journal 134: 824–6Google Scholar
Day, E. 1996. Bumble bee. Blacksburg, Virginia: Insect Identification Laboratory, Virginia Polytechnic Institute and State UniversityGoogle Scholar
Donovan, B.J., Wier, S.S. 1979. Development of hives for field population increase, and studies on the life cycle of four species of bumble bees in New Zealand. New Zealand Journal of Agricultural Research 21: 733–56CrossRefGoogle Scholar
Fields, P.G. 1992. The control of stored product insects and mites with extreme temperatures. Journal of Stored Products Research 28: 89118CrossRefGoogle Scholar
Frison, T.H. 1926. Contribution to the knowledge of the inter-relations of the bumble bees of Illinois with their animate environment. Annals of the Entomological Society of America 19: 203–35CrossRefGoogle Scholar
Johnson, J.A., Wofford, P.L. 1991. Effects of age on response of eggs of Indianmeal moth and navel-orange worm (Lepidoptera, Pyralidae) to subfreezing temperatures. Journal of Economic Entomology 84: 202–5CrossRefGoogle Scholar
Johnson, J.A., Valero, K.A., Hannel, M.M. 1997. Effect of low temperature storage on survival and reproduction of Indian meal moth (Lepidoptera: Pyralidae). Crop Protection 16: 519–23CrossRefGoogle Scholar
Macfarlane, R.P. 1974. Ecology of Bombinae (Hymenoptera: Apidae) of Southern Ontario, with emphasis on their natural enemies and relationships with flowers. PhD thesis, University of Guelph, Guelph, OntarioGoogle Scholar
Macfarlane, R.P., Griffin, R.P., Read, P.E.C. 1984. Hives for management of bumble bees in New Zealand. Institut National de la Recherche Agronomique (INRA) Publication 5: 435–41Google Scholar
Macfarlane, R.P., Patten, K.D., Royce, L.A., Wyatt, B.K.W., Mayer, D.F. 1994. Management potential of sixteen North American bumble bee species. Melanderia 50: 112Google Scholar
Macfarlane, R.P., Lipa, J.J., Liu H, J. 1995. Pathogens and internal enemies of bumble bees. Bee World 76: 130–48CrossRefGoogle Scholar
Mailer, D.E. 1994. Chilled aeration and storage of US crops — a review. pp 300–11 in Highly, E., Wright, E.J., Banks, H.J., Champ, B.R. (Eds), Proceedings of the 6th International Working Conference on Stored Product Protection, Canberra, Australia, 17–23 April 1994. Wallingford, United Kingdom: CAB InternationalGoogle Scholar
McGaughey, W.H. 1985. Evaluation of Bacillus thuringiensis for controlling Indian meal moths in farm grain bins and elevator silos. Journal of Economic Entomology 78: 1089–94CrossRefGoogle Scholar
McGaughey, W.H., Beeman, R.W. 1988. Resistance to Bacillus thuringiensis in colonies of Indian meal moth and almond moth (Lepidoptera: Pyralidae). Journal of Economic Entomology 81: 2833CrossRefGoogle Scholar
Michael, A., Mullen, E., Wileyto, P., Arther, F.H. 1998. Influence of trap design and location on the capture of Plodia interpunctella (Indian meal moth) (Lepidoptera: Pyralidae) in a release–recapture study. Journal of Stored Product Research 34: 33–6Google Scholar
Ribeiro, M., Duchateau, M.J., Velthuis, H.H.W. 1996. Comparison of the effects of two kinds of commercially available pollen on colony development and queen production in the bumble bee Bombus terrestris. Apidologie 27: 133–44CrossRefGoogle Scholar
SAS Institute Inc. 1988. SAS/STAT user's guide. Cary, North Carolina: SAS Institute IncGoogle Scholar
Sait, S.M., Begon, M., Thompson, D.J., Harvey, J.A., Hails, R.S. 1997. Factors affecting host selection in an insect host-parasitoid interaction. Ecological Entomology 22: 225–30CrossRefGoogle Scholar
Schmid-Hempel, P. 1998. Parasites in social insects. Princeton, New Jersey: Princeton University PressGoogle Scholar