Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T05:32:53.278Z Has data issue: false hasContentIssue false

Current and future global potential distribution of the fruit fly Drosophila suzukii (Diptera: Drosophilidae)

Published online by Cambridge University Press:  27 February 2020

Justo A. Reyes
Affiliation:
Facultad de Estadística e Informática, Universidad Veracruzana, Avenida Xalapa esq. Manuel Ávila Camacho s/n, Obrero Campesina, 91020, Xalapa, Veracruz, Mexico Instituto de Ecología A. C., Red de Estudios Moleculares Avanzados, Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
Andrés Lira-Noriega*
Affiliation:
Consejo Nacional de Ciencia y Tecnología Research Fellow, Instituto de Ecología A. C., Red de Estudios Moleculares Avanzados, Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
*
*Corresponding author. Email: aliranoriega@gmail.com

Abstract

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a pest that causes severe damage to various fruits, generating economic losses. We evaluated its potential geographic distribution under current and future climatic conditions using an ecological niche modelling approach, based on the largest available database on occurrence records for this species. Additionally, we identified areas of risk to agricultural land and crops. Predictions under current climatic conditions indicated that this species is likely to be present across broad swaths of the United States of America, southeastern Asia, southeastern Australia, New Zealand, and Europe. We predict considerable expansion of its potential range for 2050, mainly in the Northern Hemisphere, because of ongoing climate change, under both low and high emissions scenarios.

Type
Research Papers
Copyright
© 2020 Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Alejandro Zaldívar-Riverón

References

Anderson, R.P. and Martinez-Meyer, E. 2004. Modelling species’ geographic distributions for conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biological Conservation, 116: 167179. https://doi.org/10.1016/S0006-3207(03)00187-3.CrossRefGoogle Scholar
Barbet-Massin, M., Rome, Q., Villemant, C., and Courchamp, F. 2018. Can species distribution models really predict the expansion of invasive species? Public Library of Science One, 13: e0193085. https://doi.org/10.1371/journal.pone.0193085.Google ScholarPubMed
Bolda, M.P., Goodhue, R.E., and Zalom, F.G. 2010. Spotted wing drosophila: potential economic impact of a newly established pest. Agricultural and Resource Economics Update, 13: 58.Google Scholar
Centre for Agriculture and Bioscience International. 2018. Invasive species compendium: Drosophila suzukii [online]. Available from www.cabi.org/isc/datasheet/109283 [accessed 15 January 2018].Google Scholar
Chamberlain, S. 2017. spocc: Interface to species occurrence data sources [online]. Available from https://CRAN.R-project.org/package=spocc [accessed 2 October 2017].Google Scholar
Cobos, M.E., Peterson, A.T., Barve, N., and Osrio-Olvera, L. 2019. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7: e6281. https://doi.org/10.7717/peerj.6281.CrossRefGoogle Scholar
Dalton, D.T., Walton, V.M., Shearer, P.W., Walsh, D.B., Caprile, J., and Isaacs, R. 2011. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Management Science, 67: 13681374. https://doi.org/10.1002/ps.2280.CrossRefGoogle ScholarPubMed
deRos, G., Conci, S., Pantezzi, T., and Savini, G. 2015. The economic impact of invasive pest Drosophila suzukii on berry production in the Province of Trento, Italy. Journal of Berry Research, 5: 8996. https://doi.org/10.3233/JBR-150092.CrossRefGoogle Scholar
dos Santos, L.A., Mendes, M.F., Kruger, A.P., Blauth, M.L., Gottschalk, M.S., and Garcia, F.R.M. 2017. Global potential distribution of Drosophila suzukii (Diptera, Drosophilidae). Public Library of Science One, 12: e0174318. https://doi.org/10.1371/journal.pone.0174318.Google Scholar
Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129151. https://doi.org/10.1111/j.2006.0906-7590.04596.x.CrossRefGoogle Scholar
Farber, O. and Kadmon, R. 2003. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecological Modelling, 160: 115130. https://doi.org/10.1016/S0304-3800(02)00327-7.CrossRefGoogle Scholar
Food and Agriculture Organization of the United Nations. 2017a. Agricultura y dialogo de culturas, nuestro patrimonio común [online]. Available from: www.fao.org/docrep/008/a0015s/a0015s00.htm#Contents [accessed on 5 October 2017].Google Scholar
Food and Agriculture Organization of the United Nations. 2017b. Plagas y enfermedades de las plantas [online]. Available from: www.fao.org/emergencies/tipos-de-peligros-y-de-emergencias/plagas-y-enfermedades-de-las-plantas/es [accessed on 5 October 2017].Google Scholar
Food and Agriculture Organization of the United Nations. 2018. FAOSTAT [online]. Available from www.fao.org/faostat/es/#data/QC [accessed 15 January 2018].Google Scholar
Goodhue, R.E., Bolda, M., Farnsworth, D., Williams, J.C., and Zalom, F.G. 2011. Spotted wing drosophila infestation of California strawberries and raspberries: economic analysis of potential revenue losses and control costs. Pest Management Science, 67: 13961402. https://doi.org/10.1002/ps.2259.CrossRefGoogle ScholarPubMed
Grassi, A., Giongo, L., and Palmieri, L. 2011. Drosophila (Sophophora) suzukii (Matsumura), new pest of soft fruits in Trentino (North-Italy) and in Europe, International Organisation for Biological and Integrated Control/West Palaearctic Regional Section Bulletin, 70: 121128.Google Scholar
Gutierrez, A.P., Ponti, L., and Dalton, D.T. 2016. Analysis of the invasiveness of spotted wing drosophila (Drosophila suzukii) in North America, Europe, and the Mediterranean Basin. Biological Invasions, 18: 36473663. https://doi.org/10.1007/s10530-016-1255-6.CrossRefGoogle Scholar
Hansen, J., Ruedy, R., Sato, M., and Lo, K. 2010. Global surface temperature change. Reviews of Geophysics, 48: article RG4004, 129. https://doi.org/10.1029/2010RG000345.CrossRefGoogle Scholar
Hauser, M. 2011. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Management Science, 67: 13521357. https://doi.org/10.1002/ps.2265.CrossRefGoogle ScholarPubMed
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 19651978. https://doi.org/10.1002/joc.1276.CrossRefGoogle Scholar
Jakobs, R., Gariepy, T.D., and Sinclair, B.J. 2015. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. Journal of Insect Physiology, 79: 19. https://doi.org/10.1016/j.jinsphys.2015.05.003.CrossRefGoogle Scholar
Jiménez-Valverde, A., Peterson, A.T., Soberón, J., Overton, J.M., Aragón, P., and Lobo, J.M. 2011. Use of niche models in invasive species risk assessments. Biological Invasions, 13: 27852797. https://doi.org/10.1007/s10530-011-9963-4.CrossRefGoogle Scholar
Kenis, M., Tonina, L., Eschen, R., van der Sluis, B., Sancassani, M., Mori, N., et al. 2016. Non-crop plants used as hosts by Drosophila suzukii in Europe. Journal of Pest Science, 89: 735748. https://doi.org/10.1007/s10340-016-0755-6.CrossRefGoogle ScholarPubMed
Lee, J.C., Bruck, D.J., Dreves, A.J., Ioriatti, C., Vogt, H., and Baufeld, P. 2011. In focus: spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Management Science, 671: 3491351. https://doi.org/10.1002/ps.2271.Google Scholar
Lee, J.C., Dreves, A.J., Cave, A.M., Kawai, S., Isaacs, R., Miller, J.C., et al. 2015. Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Annals of Entomological Society of America, 108: 117129. https://doi.org/10.1093/aesa/sau014.CrossRefGoogle Scholar
Lira-Noriega, A., Soberón, J., and Miller, C.P. 2013. Process-based and correlative modeling of desert mistletoe distribution: a multiscalar approach. Ecosphere, 4: article 99, 123. https://doi.org/10.1890/ES13-00155.1.CrossRefGoogle Scholar
Lobo, J.M., Jiménez-Valverde, A., and Hortal, J. 2010. The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33: 103114. https://doi.org/10.1111/j.1600-0587.2009.06039.x.CrossRefGoogle Scholar
Mazzi, D., Bravin, E., Meraner, M., Finger, R., and Kuske, S. 2017. Economic impact of the introduction and establishment of Drosophila suzukii on sweet cherry production in Switzerland. Insects, 8: article 18, 113. https://doi.org/10.3390/insects8010018.CrossRefGoogle ScholarPubMed
McSweeney, C.F., Jones, R.G., Lee, R.W., and Rowell, D.P. 2015. Selecting CMIP5 GCMs for downscaling over multiple regions. Climate Dynamics, 44: 32373260. https://doi.org/10.1007/s00382-014-2418-8.CrossRefGoogle Scholar
Mitsui, H., Beppu, K., and Kimura, M.T. 2010. Seasonal life cycles and resource uses of flower- and fruit-feeding drosophilid flies (Diptera: Drosophilidae) in central Japan. Entomological Science, 13: 6067. https://doi.org/10.1111/j.1479-8298.2010.00372.x.CrossRefGoogle Scholar
Ørsted, I.V. and Ørsted, M. 2018. Data from: species distribution models of the spotted wing drosophila (Drosophila suzukii, Diptera: Drosophilidae) in its native and invasive range reveal an ecological niche shift. Dryad Digital Repository. https://doi.org/10.5061/dryad.mn0254p.CrossRefGoogle Scholar
Ørsted, I.V. and Ørsted, M. 2019. Species distribution models of the spotted wing drosophila (Drosophila suzukii, Diptera: Drosophilidae) in its native and invasive range reveal an ecological niche shift. Journal of Applied Ecology, 56: 423435. https://doi.org/10.1111/1365-2664.13285.CrossRefGoogle Scholar
Owens, H.L., Campbell, L.P., Dornak, L.L., Saupe, E.E., Barve, N., Soberón, J., et al. 2013. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 263: 1018. https://doi.org/10.1016/j.ecolmodel.2013.04.011.CrossRefGoogle Scholar
Peterson, A.T., Papes, M., and Soberón, J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213: 6372. https://doi.org/10.1016/j.ecolmodel.2007.11.008.CrossRefGoogle Scholar
Peterson, A.T. and Soberón, J. 2012. Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza & Conservação, 10: 102107. https://doi.org/10.4322/natcon.2012.019.CrossRefGoogle Scholar
Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R., Martínez-Meyer, E., Nakamura, M., and Araújo, M. 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton, New Jersey, United States of America.CrossRefGoogle Scholar
Phillips, S.J., Dudík, M., and Schapire, R.E. 2004. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-first International Conference on Machine Learning. Edited by Brodley, C.E.. Association for Computing Machinery, New York, New York, United States of America, Pp. 655662. https://doi.org/10.1145/1015330.1015412.Google Scholar
Poyet, M., Le Roux, V., Gibert, P., Meirland, A., Prévost, G., Eslin, P., and Chabrerie, O. 2015. The wide potential trophic niche of the asiatic fruit fly Drosophila suzukii: the key of its invasion success in temperate Europe? Public Library of Science One, 10: e0142785, 126. https://doi.org/10.1371/journal.pone.0142785.Google ScholarPubMed
R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Raghavan, R.K., Peterson, A.T., Cobos, M.E., Ganta, R., and Foley, D. 2019. Current and future distribution of the lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae) in North America. Public Library of Science One, 14: e0209082. https://doi.org/10.1371/journal.pone.0209082.Google Scholar
Sasaki, M. and Sato, R. 1995. Bionomics of the cherry drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Fukushima prefecture (Japan). Annual Report of the Society of Plant Protection of North Japan, 46: 164172.Google Scholar
Soberón, J. and Nakamura, M. 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences of the United States of America, 106: 1964419650. https://doi.org/10.1073/pnas.0901637106.CrossRefGoogle ScholarPubMed
Stephens, A.R., Asplen, M.K., Hutchison, W.D., and Venette, R.C. 2015. Cold hardiness of winter-acclimated Drosophila suzukii (Diptera: Drosophilidae) adults. Environmental Entomology, 44: 16191626. https://doi.org/10.1093/ee/nvv134.CrossRefGoogle ScholarPubMed
Suárez-Mota, M.E., Ortiz, E., Villaseñor, J.L., and Espinosa-García, F.J. 2016. Ecological niche modeling of invasive plant species according to invasion status and management needs: the case of Chromolaena odorata (Asteraceae) in South Africa. Polish Journal of Ecology, 64: 369383. https://doi.org/10.3161/15052249PJE2016.64.3.007.CrossRefGoogle Scholar
Tochen, S., Dalton, D.D., Wiman, N., Hamm, C., Shearer, P.W., and Walton, V.M. 2014. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environmental Entomology, 43: 501510. https://doi.org/10.1603/EN13200.CrossRefGoogle ScholarPubMed
Tochen, S., Woltz, J.M., Dalton, D.T., Lee, J.C., Wiman, N.G., and Walton, V.M. 2016. Humidity affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry. Journal of Applied Entomology, 140: 4757. https://doi.org/10.1111/jen.12247.CrossRefGoogle Scholar
Tonina, L., Mori, N., Giomi, F., and Battisti, A. 2016. Development of Drosophila suzukii at low temperatures in mountain areas. Journal of Pest Science, 89: 667678. https://doi.org/10.1007/s10340-016-0730-2.CrossRefGoogle Scholar
van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. 2011. The representative concentration pathways: an overview. Climatic Change, 109: 531. https://doi.org/10.1007/s10584-011-0148-z.CrossRefGoogle Scholar
Walsh, D.B., Bolda, M.P., Goodhue, R.E., Dreves, A.J., Lee, J.C., Bruck, D.J., et al. 2011. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. Journal of Integrated Pest Management, 1: 17. https://doi.org/10.1603/IPM10010.CrossRefGoogle Scholar
Warren, D.L. and Seifert, S.N. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21: 335342. https://doi.org/10.1890/10-1171.1.CrossRefGoogle ScholarPubMed
Wickham, H., François, R., Henry, L., and Müller, K. 2018. dplyr: a grammar of data manipulation [online]. Available from https://CRAN.R-project.org/package=dplyr [accessed 12 March 2018].Google Scholar
Supplementary material: File

Reyes and Lira-Noriega supplementary material

Reyes and Lira-Noriega supplementary material 1

Download Reyes and Lira-Noriega supplementary material(File)
File 31.1 KB
Supplementary material: File

Reyes and Lira-Noriega supplementary material

Reyes and Lira-Noriega supplementary material 2

Download Reyes and Lira-Noriega supplementary material(File)
File 62.5 KB