Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T17:55:05.387Z Has data issue: false hasContentIssue false

Detecting the titer in forest soils of spores of the gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen, Entomophaga maimaiga (Zygomycetes: Entomophthorales)

Published online by Cambridge University Press:  31 May 2012

Ronald M. Weseloh*
Affiliation:
Department of Entomology, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut, United States 06511
Theodore G. Andreadis
Affiliation:
Department of Soils and Water, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut, United States 06511
*
1Corresponding author (e-mail: Ronald.Weseloh@po.state.ct.us).

Abstract

Bioassays and direct counts were used to assess the abundance of resting spores of the gypsy moth, Lymantria dispar (L.), fungal pathogen, Entomophaga maimaiga Humber, Shimazu and Soper in forest soils. Resting spores in soil collected in October, January, and March and held under refrigeration germinated as readily as spores collected in April, but those collected in April germinated faster. Bioassays of resting spores in soils from different sites in Connecticut were directly related to results obtained from physically counting spores in the soil, and weakly correlated with a previously developed forest-based bioassay. The number of resting spores in a site was inversely related to the number of years since the site had last been defoliated by the gypsy moth, resulting in an implied maximum viability of resting spores of about 10 years. This maximum longevity was similar to a direct measure of long-term resting-spore viability. The study implies that resting-spore load in the soil may be an important determinant of the ability of the pathogen to control the gypsy moth.

Résumé

Des tests et des dénombrements directs ont permis d’estimer l’abondance des spores de réserve du champignon Entomophaga maimaiga Humber, Shimazu et Soper, un pathogène de la Spongieuse Lymantria dispar (L.), dans des sols forestiers. Les spores de réserve récoltées en octobre, janvier et mars et réfrigérées ont germé aussi facilement que les spores récoltées en avril, mais la germination était plus rapide chez ces derniers. Des tests biologiques sur les spores de réserve de plusieurs sites du Connecticut étaient fortement reliés aux résultats de dénombrements directs des sols et en corrélation faible avec un test antérieur à l’échelle de la forêt. Le nombre de spores de réserve à un site était inversement proportionnel au nombre d’années écoulé depuis la dernière défoliation par la Spongieuse, ce qui semble devoir établir implicitement à approximativement 10 ans la viabilité maximale des spores de réserve. Cette estimation de la longévité maximale correspond à la valeur obtenue par mesure directe de la viabilité à long terme des spores de réserve. Les résultats indiquent que la quantité de spores de réserve contenue dans le sol peut être un facteur déterminant important de l’efficacité du pathogène dans la lutte contre la Spongieuse.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreadis, T.G., Weseloh, R.M. 1990. Discovery of Entomophaga maimaiga in North American gypsy moth, Lymantria dispar. Proceedings of the National Academy of Sciences of the United States of America 87: 2461–5CrossRefGoogle ScholarPubMed
Davison, A.C., Hinkley, D.V. 1997. Bootstrap methods and their application. Cambridge, United Kindom: Cambridge University PressCrossRefGoogle Scholar
Hajek, A.E. 1999. Pathology and epizootiology of Entomophaga maimaiga infections in forest Lepidoptera. Microbiology and Molecular Biology Reviews 63: 814–35CrossRefGoogle ScholarPubMed
Hajek, A.E., Humber, R.A. 1997. Formation and germination of Entomophaga maimaiga azygospores. Canadian Journal of Botany 75: 1739–45CrossRefGoogle Scholar
Hajek, A.E., Wheeler, M.M. 1994. Application of techniques for quantification of soil-borne entomophthoralean resting spores. Journal of Invertebrate Pathology 64: 71–3CrossRefGoogle Scholar
Hajek, A.E., Humber, R.A., Elkinton, J.S., May, B., Walsh, S.R.A., Silver, J.C. 1990. Allozyme and restriction fragment length polymorphism analyses confirm Entomophaga maimaiga responsible for 1989 epizootics in North American gypsy moth populations. Proceedings of the National Academy of Sciences of the United States of America 87: 6979–82CrossRefGoogle ScholarPubMed
Hajek, A.E., Humber, R.A., Elkinton, J.S. 1995. Mysterious origin of Entomophaga maimaiga in North America. American Entomologist 41: 3142CrossRefGoogle Scholar
Hajek, A.E., Bauer, L., McManus, M.L., Wheeler, M.M. 1998. Distribution of resting spores of the Lymantria dispar pathogen Entomophaga maimaiga in soil and on bark. Biocontrol (Dordrecht) 43: 189200CrossRefGoogle Scholar
Li, Z., Soper, R.S., Hajek, A.E. 1988. A method for recovering resting spores of Entomophthorales (Zygomycetes) from soil. Journal of Invertebrate Pathology 52: 1826CrossRefGoogle Scholar
Ostle, B. 1963. Statistics in research. Ames, Iowa: Iowa State University PressGoogle Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. 1992. Numerical recipes in C. New York: Cambridge University PressGoogle Scholar
Speare, A.T., Colley, R.H. 1912. The artificial use of the brown-tail fungus in Massachusetts with practical suggestions for private experiments, and a brief note on a fungus disease of the gypsy caterpillar. Boston, Massachusetts: Wright & PotterGoogle Scholar
SPSS. 1998. SYSTAT. Chicago: SPSS IncGoogle Scholar
Weseloh, R.M. 1998. Possibility for recent origin of the gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) in North America. Environmental Entomology 27: 171–7CrossRefGoogle Scholar
Weseloh, R.M. 1999. Entomophaga maimaiga (Zygomycetes: Entomophthorales) resting spores and biological control of the gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology 28: 1162–71CrossRefGoogle Scholar
Weseloh, R.M., Andreadis, T.G. 1992 a. Epizootiology of the fungus Entomophaga maimaiga, and its impact on gypsy moth populations. Journal of Invertebrate Pathology 59: 133–41CrossRefGoogle Scholar
Weseloh, R.M., Andreadis, T.G. 1992 b. Mechanisms of transmission of the gypsy moth (Lepidoptera: Lymantriidae) fungus, Entomophaga maimaiga (Entomophthorales: Entomophthoraceae) and effects of site conditions on its prevalence. Environmental Entomology 21: 901–6CrossRefGoogle Scholar
Weseloh, R.M., Andreadis, T.G. 1997. Persistence of resting spores of Entomophaga maimaiga, a fungal pathogen of the gypsy moth, Lymantria dispar. Journal of Invertebrate Pathology 69: 195–6CrossRefGoogle ScholarPubMed