Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T22:47:54.033Z Has data issue: false hasContentIssue false

DIAPAUSE AND THE SEASONAL ECOLOGY OF THE INTRODUCED PARASITE, COTESIA (APANTELES) RUBECULA (HYMENOPTERA: BRACONIDAE)

Published online by Cambridge University Press:  31 May 2012

Vincent Nealis
Affiliation:
Institute of Animal Resource Ecology, University of British Columbia, Vancouver, British Columbia

Abstract

The insect parasite Cotesia rubecula (Marshall) shows a long-day, photoperiodic response that results in diapause in the eonymph. Within the region of the critical photoperiod, the diapause response is modified by temperature and by the duration of the developmental period of the larval parasite, but in field populations in Vancouver, diapause is predominantly a response to short photoperiods. There is evidence that the parasite's response is largely independent of the host's response. Once diapause is induced, there is an obligatory dormant period of at least 2 months after which diapause terminates when specific-heat requirements are fulfilled. The estimated heat requirements are used to predict the date of diapause termination and the emergence of parasite adults in the field. Parasite activity begins almost 6 weeks after that of its host.

The critical photoperiod for populations in Vancouver, Canada, lies between 15- and 16-h photophase but in Canberra, Australia, the critical photoperiod is less than 13 h. The significance of this difference in the diapause response of the 2 introduced populations is discussed and recommendations are made for further biocontrol efforts.

Résumé

L'insecte parasite Cotesia rubecula (Marshall) répond à une photopériode de jour long par l'entrée en diapause de l'“éonymphe.” Dans la région où la photopériode est critique, le déclenchement de la diapause est modifié par la température et la durée de développement de la larve, mais dans les populations étudiées sur le terrain à Vancouver, la diapause était principalement déclenchée par des photopériodes courtes. La réaction du parasite semble très indépendante de celle de l'hôte. Une fois la diapause amorcée, suit obligatoirement une période de dormance d'au moins 2 mois, qui se termine lorsque des exigences thermiques particulières sont atteintes. Des estimations de ces exigences sont employées pour la prévision de la fin de la diapause et de la sortie des adultes sur le terrain. Le parasite entre en activité près de 6 semaines après son hôte.La photopériode critique pour les populations de Vancouver (Canada) est entre 15 et 16 h, tandis qu'à Canberra (Australie) elle est de moins de 13 h. L'importance de cette différence entre les 2 populations introduites est analysée, et des recommandations sont formulées en ce qui concerne les futurs efforts de lutte biologique.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. appl. Ecol. 11: 431438.CrossRefGoogle Scholar
Corrigan, J.E. 1982. Cotesia (Apanteles) rubecula (Hymenoptera: Braconidae) recovered in Ottawa, Ontario ten years after its release. Proc. ent. Soc. Ont. 113: 71.Google Scholar
Danilevskii, A.S. 1965. Photoperiodism and Seasonal Development of Insects (translated from Russian). Oliver and Boyd, Edinburgh. ix + 283 pp.Google Scholar
Frazer, B.D., and Gilbert, N.. 1976. Coccinellids and aphids: a quantitative study of the impact of adult ladybirds (Coleoptera: Coccinellidae) preying on field population of pea aphids (Homoptera: Aphididae). J. ent. Soc. B.C. 73: 3356.Google Scholar
Hu, C., Yu, B-L., and Wei, D-Z.. 1981. The first record of Apanteles rubecula from China (translated by Cho-Kai Chan). Acta ent. Sin. 24: 343.Google Scholar
Maslennikova, V.A. 1959. The relationship of the seasonal development of Apanteles glomeratus L. to that of its host Pieris brassicae L. in different geographical populations. Ent. Rev. 38: 463467.Google Scholar
Mason, W.R.M. 1981. The polyphyletic nature of Apanteles Foerster (Hymenoptera: Braconidae): a phylogeny and reclassification of Microgasterinae. Mem. ent. Soc. Can. 115. 147 pp.Google Scholar
Morris, R.F., and Fulton, W.C.. 1970. Models for the development and survival of Hyphantria cunea in relation to temperature and humidity. Mem. ent. Soc. Can. 70. 60 pp.Google Scholar
Nealis, V.G. 1983. Tetrastichus galactopus (Hym.; Eulophidae), a hyperparasite of Apanteles rubecula and Apanteles glomeratus (Hym.; Braconidae) in North America. J. ent. Soc. B.C. 80: 2528.Google Scholar
Nealis, V.G., Jones, R.E., and Wellington, W.G.. 1984. Temperature and development in host-parasite relationships. Oecologia 61: 224229.CrossRefGoogle ScholarPubMed
Nechols, J.R., Tauber, M.J., and Helgesen, R.. 1980. Environmental control of diapause and postdiapause development in Tetrastichus julis (Hymenoptera: Eulophidae), a parasite of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae). Can. Ent. 112: 12771284.CrossRefGoogle Scholar
Oatman, E.R., and Platner, G.R.. 1969. An ecological study of insect populations on cabbage in southern California. Hilgardia 40. 40 pp.Google Scholar
Oatman, E.R., and Platner, G.R.. 1972. Colonization of Trichogramma evanescens and Apanteles rubecula on the imported cabbageworm on cabbage in southern California. Environ. Ent. 1: 347351.CrossRefGoogle Scholar
Parker, F.D., and Pinnell, R.E.. 1972. Further studies of the biological control of Pieris rapae using supplemental host and parasite releases. Environ. Ent. 1: 150157.CrossRefGoogle Scholar
Puttler, B., Parker, F.D., Pinnell, R.E., and Thewke, S.E.. 1970. Introduction of Apanteles rubecula into the United States as a parasite of the imported cabbageworm. J. econ. Ent. 63: 304305.CrossRefGoogle Scholar
Rabb, R.L., and Thurston, R.. 1969. Diapause in Apanteles congregatus. Ann. ent. Soc. Am. 62: 125128.CrossRefGoogle Scholar
Saunders, D.S. 1982. Insect Clocks, 2nd ed. Pergamon Press, Oxford. xvii + 409 p.Google Scholar
Tauber, M.J., and Tauber, C.A.. 1972. Geographic variation in critical photoperiod and in diapause intensity of Chrysopa carnea (Neuroptera). J. Insect Physiol. 18: 2529.CrossRefGoogle Scholar
Tauber, M.J., and Tauber, C.A.. 1976. Physiological responses underlying the timing of vernal activities in insects. Int. J. Biometeor. 20: 218222.CrossRefGoogle Scholar
Tauber, M.J., Tauber, C.A., Nechols, J.R., and Obrycki, J.J.. 1983. Seasonal activity of parasitoids: control by external, internal and genetic factors. In Brown, V.K. and Hodek, I. (Eds.), Diapause and Life Cycle Strategies in Insects. Junk, The Hague.Google Scholar
Weseloh, R.M. 1973. Termination and induction of diapause in the gypsy moth larval parasitoid Apanteles melanoscelus. J. Insect Physiol. 19: 20252033.CrossRefGoogle Scholar
Wilkinson, A.T.S. 1966. Apanteles rubecula Marsh and other parasites of Pieris rapae in British Columbia. J. econ. Ent. 59: 10121013.Google Scholar
Wilkinson, J.D., Morrison, R.K., and Peters, P.K.. 1972. Effect of Calco Oil Red n-1700 dye incorporated into a semiartificial diet of the imported cabbageworm, corn earworm, and cabbage looper. J. econ. Ent. 65: 264268.CrossRefGoogle Scholar
Wilson, F. 1960. A review of the biological control of insects and weeds in Australia and Australian New Guinea. Tech. Comm. 1, CAB: 3031.Google Scholar
Wylie, H.G. 1977. Preventing and terminating pupal diapause in Athrycia cinerea (Diptera: Tachinidae). Can. Ent. 109: 10831090.CrossRefGoogle Scholar