Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T23:38:20.246Z Has data issue: false hasContentIssue false

DIFFERENCE IN WEIGHT GAIN DURING FINAL STADIUM OF PALE WESTERN AND ARMY CUTWORMS RELATED TO LIFE HISTORY AND CROP DAMAGE1

Published online by Cambridge University Press:  31 May 2012

J.R. Byers
Affiliation:
Agriculture Canada Research Station, Lethbridge, Alberta, Canada T1J 4B1

Abstract

Weight gain during the penultimate and ultimate stadia of the pale western cutworm, Agrotis orthogonia Morr., comprises about 37% and 39%, respectively, of the maximum larval weight. For the army cutworm, Euxoa auxiliaris (Grt.), the corresponding values are 20% and 69%. The proportion of final larval weight that is gained by the ultimate-instar larva of the army cutworm is similar to that reported for other noctuids, whereas the proportion gained by the ultimate-instar larva of the pale western cutworm is much lower and is likely related to the prepupal aestivation that occurs in this species. Because of the growth pattern of pale western cutworm, a substantial proportion of total food consumption, and consequently, crop damage, occurs during the penultimate stadium of this species.

Résumé

Chez le Ver-gris octogonal, Agrotis orthogonia Morr., le gain de masse au cours de l’avant-dernier stade larvaire représente 37% de la masse larvaire maximale et ce gain au cours du dernier stade, 39% de la masse larvaire totale. Chez la Légionnaire grise, Euxoa auxiliaris (Grt.), les valeurs correspondantes sont de 20% et 69%. La proportion de masse larvaire finale qui est acquise au cours du dernier stade chez la légionnaire est semblable au gain de masse qui prévaut chez d’autres noctuidés, alors que la proportion de masse acquise au cours du dernier stade chez le ver-gris est beaucoup plus faible, probablement à cause de la période d’estivation prénymphale que subit cette espèce. A cause de son rythme particulier de croissance, le Ver-gris octogonal absorbe une importante proportion de toute la nourriture qu’il consomme au cours de sa vie durant son avant-dernier stade et c’est également au cours de ce stade qu’il cause le plus de dommages aux récoltes.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, T.L., and Musick, G.J.. 1977. Cutting potential of the black cutworm on field corn. Journal of Economic Entomology 70: 745747.CrossRefGoogle Scholar
Bailey, C.G., and Singh, N.B.. 1977. An energy budget for Mamestra configurata (Lepidoptera: Noctuidae). The Canadian Entomologist 109: 687693.Google Scholar
Beck, S.D. 1986. Effects of photoperiod and thermoperiod on growth of Agrotis ipsilon (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 79: 821828.Google Scholar
Burton, R.L., Starks, K.J., and Peters, D.C.. 1980. The army cutworm. Bulletin B-749, Agricultural Experiment Station, Oklahoma State University. 35 pp.Google Scholar
Byers, J.R., Hill, B.D., and Schaalje, G.B.. 1992. Effect of inactivity associated with interstadial molts on short-term efficacy of insecticides for control of pale western cutworm. Journal of Economic Entomology 89. In press.Google Scholar
Clement, S.L., and McCartney, D.A.. 1982. Black cutworm (Lepidoptera: Noctuidae): Measurement of larval feeding parameters on field corn in the greenhouse. Journal of Economic Entomology 75: 10051008.CrossRefGoogle Scholar
Cook, W.C. 1927. Studies on the ecology of Montana cutworms (Phalaenidae). Ecology 8: 158173.Google Scholar
Davis, J.J., and Satterthwait, A.F.. 1916. Life-history studies of Cirphis unipuncta, the true armyworm. Journal of Agricultural Research 6: 799812.Google Scholar
Fescemyer, H.W., Rose, R.L., Sparks, T.C., and Hammond, A.M.. 1986. Juvenile hormone esterase activity in developmentally synchronous ultimate stadium larvae of the migrant insect, Anticarsia gemmatalis. Journal of Insect Physiology 32: 10551063.Google Scholar
Foster, M.A., and Gaylor, M.J.. 1986. Feeding dynamics of the black cutworm, Agrotis ipsilon (Lepidoptera: Noctuidae), in cotton. Journal of Economic Entomology 79: 840842.CrossRefGoogle Scholar
Hinks, C.F., and Byers, J.R.. 1976. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). V. Rearing procedures, and life cycles of 36 species. The Canadian Entomologist 108: 13451357.CrossRefGoogle Scholar
Jacobson, L.A. 1971. The pale western cutworm, Agrotis orthogonia Morrison (Lepidoptera: Noctuidae). Quaestiones entomologicae 7: 411436.Google Scholar
Jones, D., Jones, G., and Hammock, B.D.. 1981. Growth parameters associated with endocrine events in larval Trichoplusia ni (Hubner) and timing of these events with developmental markers. Journal of Insect Physiology 27: 779788.Google Scholar
Kasting, R., and McGinnis, A.J.. 1959. Nutrition of the pale western cutworm, Agrotis orthogonia Morr. (Lepidoptera: Noctuidae). II. Dry matter and nitrogen economy of larvae fed on sprouts of a hard red spring and a durum wheat. Canadian Journal of Zoology 37: 713720.Google Scholar
McGinnis, A.J., and Kasting, R.. 1959. Nutrition of the pale western cutworm, Agrotis orthogonia Morr. (Lepidoptera: Noctuidae). 1. Effects of underfeeding and artificial diets on growth and development, and a comparison of wheat sprouts of Thatcher, Triticum aestivum L., and Golden Ball, T. durum Desf., as food. Canadian Journal of Zoology 37: 259266.Google Scholar
Mukerji, M.K., and Guppy, J.C.. 1970. A quantitative study of food consumption and growth in Pseudaletia unipuncta (Lepidoptera: Noctuidae). The Canadian Entomologist 102: 11791188.CrossRefGoogle Scholar
Satterthwait, A.F. 1933. Larval instars and feeding of the black cutworm, Agrotis ypsilon Rott. Journal of Agricultural Research 46: 517530.Google Scholar
Webb, B.A., and Dahlman, D.L.. 1985. Developmental pathology of Heliothis virescens larvae parasitized by Microplitis croceipes: Parasite-mediated host developmental arrest. Archives of Insect Biochemistry and Physiology 2: 131143.CrossRefGoogle Scholar