Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T17:54:45.611Z Has data issue: false hasContentIssue false

DIFFERENCES IN THE UTILIZATION OF TREE SPECIES AS LARVAL HOSTS AND PUPATION SITES BY THE GYPSY MOTH, LYMANTRIA DISPAR (LEPIDOPTERA: LYMANTRIIDAE)

Published online by Cambridge University Press:  31 May 2012

Yves Mauffette
Affiliation:
Department of Biology, McGill University, Montreal, Quebec H3A 1B1
Martin J. Lechowicz
Affiliation:
Department of Biology, McGill University, Montreal, Quebec H3A 1B1

Abstract

In the summer of 1980, gypsy moth populations were monitored in 13 sparsely infested forests in southwestern Quebec; counts of living and dead larvae and pupae were made on 1,870 trees representing 28 deciduous and one coniferous species. Contrary to our null expectations, the proportionate numbers of pupae compared with larvae on the various host species were not equal. Hosts more preferred by larvae were less preferred by pupae, and vice versa. For example, pupae were disproportionately abundant on host species like Acer pensylvanicum L., Carya ovata (Mill.) K. Koch, and Juglans cinerea L. which are not generally favored larval hosts. Conversely, favored larval hosts like Quercus rubra L. and Ostrya virginiana (Mill.) K. Koch carried lower numbers of pupae than expected from the numbers of larvae feeding on them. Such differential utilization of host trees by larvae versus pupae, which can arise either from host-dependent differences in larval mortality or from late instar migration between hosts, may contribute to maintaining the broad polyphagy of gypsy moth larvae.

Résumé

Durant l'été de 1980, des populations de spongieuses ont été inventoriées dans 13 forêts du sud-ouest québeois peu abondamment infestées par cet insecte; les larves vivantes et mortes, et les chrysalides ont été comptées sur 28 décidus et un conifère pour un total de 1870 arbres. Contrairement à notre prédiction, le nombre de chrysalides identifié sur les arbres n'était pas proportionnellement égal au nombre de larves retrouvées sur les différentes essences hôtes. Les hôtes les plus préférés par les larves sont les moins préférés par les chrysalides, et vice-versa. Par exemple, les chrysalides étaient plus abondantes d'une façon disproportionnée sur les essences hôtes comme Acer pensylvanicum L., Carya ovata (Mill.) K. Koch, et Juglans cinerea L. qui sont généralement des essences non favorites. En contrepartie, les essences favorites comme Quercus rubra L. et Ostrya virginiana (Mill.) K. Koch comportaient moins de chrysalides que leur nombre de larves laissait prévoir. Les différences dans l'utilisation de l'essence hôte par les larves versus les chrysalides peuvent être en partie dues à la mortalité larvaire sur une essence en particulier, ou bien à une migration des derniers stades larvaires vers d'autres hôtes, ceci pouvant contribuer à maintenir la diversité du choix de ce polyphage qu'est la spongieuse.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbosa, P. 1978. Distribution of an endemic larval gypsy moth population among various tree species. Environ. Ent. 7: 526527.CrossRefGoogle Scholar
Barbosa, P., Greenblatt, J., Withers, W., Cranshaw, W., and Harrington, E. A.. 1979. Host-plant preferences and their induction in larvae of the gypsy moth, Lymantria dispar. Entomologia exp. appl. 26: 180188.Google Scholar
Bess, H. A., Spurr, S. H., and Littlefield, E. W.. 1947. Forest site conditions and gypsy moth. Harvard Forest Bull. 22. 56 pp.Google Scholar
Campbell, R. W., Hubbard, D. L., and Sloan, R. J.. 1975 a. Location of gypsy moth pupae and subsequent pupal survival in sparse, stable populations. Environ. Ent. 4: 597600.CrossRefGoogle Scholar
Campbell, R. W., Hubbard, D. L., and Sloan, R. J.. 1975 b. Patterns of gypsy moth occurrence within a sparse and numerically stable population. Environ. Ent. 4: 535542.CrossRefGoogle Scholar
Campbell, R. W. and Sloan, R. J.. 1977 a. Forest stand responses to defoliation by the gypsy moth. Forest Sci. Monogr. 19: 134.Google Scholar
Campbell, R. W. and Sloan, R. J.. 1977 b. Natural regulation of innocuous gypsy moth populations. Environ. Ent. 6: 315322.Google Scholar
Dansereau, P. 1959. Phytogeographia Laurentiana II. The principal plant associations of the St-Lawrence Valley. Contrib. Inst. Bot. Univ. Montreal 75.Google Scholar
Doane, C. C. and McManus, M. L. (Eds.). 1981. The gypsy moth: Research toward integrated pest management. Forest Serv. Tech. Bull. 1584. U.S. Dept. of Agriculture, Washington, D.C.Google Scholar
Forbush, E. H. and Fernald, C. H.. 1896. The Gypsy Moth. Wright and Potter, Boston.Google Scholar
Freund, R. J. and Littel, R. C.. 1981. SAS for linear models. SAS Institute, Cary, North Carolina.Google Scholar
Jobin, L. 1978. Historique et situation actuelle de la spongieuse au Mont St-Hilaire. Internal Report, Laurentian Forest Research Centre, Ste-Foy, Quebec.Google Scholar
Kleinbaun, D. G. and Kupper, L. L.. 1978. Applied Regression Analysis and Other Multivariable Methods. Duxbury Press, Mass.Google Scholar
Lance, D. and Barbosa, P.. 1979. Dispersal of larval lepidoptera with special reference to forest defoliators. Biologist 61: 90110.Google Scholar
Lance, D. and Barbosa, P.. 1981. Host plant influences on the dispersal of late instar gypsy moths, Lymantria dispar. Oikos 38: 17.CrossRefGoogle Scholar
Lechowicz, M. J. and Jobin, L.. 1983. Estimating the susceptibility of tree species to attack by the gypsy moth, Lymantria dispar. Ecol. Ent. 8: 171183.CrossRefGoogle Scholar
Leonard, D. E. 1970. Feeding rhythm in larvae of the gypsy moth. J. econ. Ent. 63: 14541457.Google Scholar
Mauffette, Y. 1982. Larval feeding preferences and their consequences for gypsy moth in southern Quebec. M.Sc. Thesis, McGill University, Montreal, Quebec.Google Scholar
Mauffette, Y., Lechowicz, M. J., and Jobin, L.. 1983. Spatial variation in the feeding preferences of the gypsy moth (Lymantria dispar L.) in southern Quebec. Can. J. Forest Res. 13: 5360.Google Scholar
Odell, T. M. and Godwin, P. A.. 1979. Attack behavior of Parasetigena silvestris in relation to host density and behavior. Ann. ent. Soc. Am. 72: 281286.Google Scholar
Pritchett, G. R. 1975. The potential geographic diffusion of the gypsy moth (Porthetria dispar) into southern forests. Southeastern Geographer 14: 4755.Google Scholar
Rafes, P. M and Gninenko, Y. I.. 1973. The survival of leaf eating caterpillars (Lepidoptera) as related to their behavior. Ent. Rev. 52: 204211.Google Scholar
Rossiter, M. C. 1981. Factors contributing to host range extension in the gypsy moth, Lymantria dispar. Ph.D. Thesis, State University of New York, Stony Brook.Google Scholar
Wallner, W. E. 1983. Gypsy moth host interactions: a concept of room and board. In Talerico, R. L. (Ed.),. Forest Defoliator-Host Interaction: A Comparison between Spruce Budworm and Gypsy Moth. USDA Forest Service, Washington, D.C.Google Scholar
Weseloh, R. M. 1974. Relationships between different sampling procedures for the gypsy moth, Porthetria dispar (Lepidoptera: Lymantriidae), and its natural enemies. Can. Ent. 106: 225231.CrossRefGoogle Scholar