Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T02:18:12.188Z Has data issue: false hasContentIssue false

DIFFERENTIAL ENCAPSULATION OF TWO BATHYPLECTES PARASITOIDS AMONG ALFALFA WEEVIL STRAINS, HYPERA POSTICA (GYLLENHAL)

Published online by Cambridge University Press:  31 May 2012

Christopher M. Maund
Affiliation:
Department of Biology, Utah State University, Logan, Utah, USA 84322–5305
T.H. Hsiao*
Affiliation:
Department of Biology, Utah State University, Logan, Utah, USA 84322–5305
*
1 Author to whom correspondence should be addressed.

Abstract

Encapsulation of Bathyplectes curculionis (Thomson) and B. anurus (Thomson) (Hymenoptera: Ichneumonidae) was investigated by dissecting parasitized larvae of three strains of the alfalfa weevil, Hypera postica (Gyllenhal) (Coleoptera: Curculionidae). In laboratory studies, there was no encapsulation of B. curculionis in the western strain of the weevil, a significant level of encapsulation in the eastern strain of the weevil, and nearly complete encapsulation in the Egyptian strain of the weevil. The rickettsia, Wolbachia postica Hsiao and Hsiao, found only in the western strain, was not involved in encapsulation. Variation in encapsulation was due to biological differences between weevil strains. Encapsulation rates among field populations of the western and Egyptian weevils were lower than in the laboratory. Encapsulation rates of weevil populations from zones in which western and Egyptian strains overlap in southern Utah, and between eastern and western strains in Colorado, were intermediate to rates of parental strains. These results imply that B. curculionis effectiveness against the western alfalfa weevil will decline with mixing of weevil strains. Bathyplectes anurus did not evoke encapsulation and was able to develop equally well in all three weevil strains. Our findings illustrate the importance of investigating the compatibility between alfalfa weevil strains and their parasitoids in devising a sound biological control strategy.

Résumé

Le capsulage de Bathyplectes curculionis (Thomson) et de B. anurus (Thomson) (Hymenoptera : Ichneumonidae) a été étudié en excisant les larves parasitisées de trois lignées du charançon postiche de la lucerne, Hypera postica (Gyllenhal) (Coleoptera : Curculionidae). Pour les études du laboratoire, la lignée de l’ouest du charançon n’a pas été capsulée, celle de l’est a été capsulée significativement, et celle de l’Égypte a été capsulée presqu’entièrement. La rickettsie, Wolbachia postica Hsaio et Hsaio, trouvée uniquement à la lignée de l’ouest, n’a pas été impliquée au capsulage. La variation en capsulage a été occasionnée par des différences biologiques parmi les lignées du charançon. Dans les populations sur le terrain, le taux du capsulage de ¡a lignée de l’ouest et de celui de la lignée d’Égypte s’est avéré moindre que ceux signalés au laboratoire. Les taux de capsulage des populations de charançon des zones où la lignée de l’ouest et celle de l’Égypte chevauchent au sud de l’Utah et où la lignée de l’est et celle de l’ouest chevauchent au Colorado ont été d’une position intérmédiaire aux taux ancestraux. Ces résultats suggèrent que l’efficacité de B. curculionis comme parasitoïde contre le charançon postiche de la luzerne diminuera au fur et à mesure que les lignées de charançons se mélangent. Bathyplectes anurus n’a pas provoqué de capsulage et a pu se développer aussi bien dans toutes les trois lignées de charançon. Nos résultats démontrent l’importance d’étudier la compatibilité parmi les lignées de charançons de la luzerne et leurs parasitoïdes pour préparer une forte stratégie pour la lutte biologique.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 19831989. Biological control action program against the alfalfa weevil. USDA/APHIS. Unpublished reports.Google Scholar
Bartell, D.P., and Pass, B.C.. 1978. Effects of Bathyplectes curculionis and Bathyplectes anurus (Hym.: Ichneumonidae) on the growth and development of Hypera postica (Col.: Curculionidae). Entomophaga 23: 281291.CrossRefGoogle Scholar
Bartell, D.P., and Pass, B.C.. 1980. Morphology, development, and behavior of the immature stages of the parasite Bathyplectes anurus (Hymenoptera: Ichneumonidae). Can. Ent. 112: 481487.CrossRefGoogle Scholar
Berberet, R.C., and Gibson, W.P.. 1976. Bathyplectes curculionis in Oklahoma: Distribution and effective parasitism of the alfalfa weevil. Ann. ent. Soc. Am. 69: 205208.CrossRefGoogle Scholar
Berberet, R.C., Nuss, K.E., and Koch, M.L.. 1976. Capsule formation in Hypera postica parasitized by Bathyplectes curculionis. Ann. ent. Soc. Am. 69: 10291035.CrossRefGoogle Scholar
Berberet, R.C., Willson, L.J., and Odejar, M.. 1987. Probabilities for encapsulation of eggs of Bathyplectes curculionis (Hymenoptera: Ichneumonidae) by larvae of Hypera postica (Coleoptera: Curculionidae) and resulting reduction in effective parasitism. Ann. ent. Soc. Am. 80: 483485.CrossRefGoogle Scholar
Cochran, W.G., and Cox, G.M.. 1957. Experimental Designs. John Wiley and Sons Inc., New York.Google Scholar
Day, W.H. 1981. Biological control of the alfalfa weevil in the northeastern United States. pp. 360374in Papavizas, G.C. (Ed.), Beltsville Symposia in Agric. Res. (5). Biological Control in Crop Protection. Allanheld, Osmun & Co. Publishers, London.Google Scholar
Dysart, R.J., and Day, W.H.. 1976. Release and recovery of introduced parasites of the alfalfa weevil in North America. U.S.D.A. Prod. Res. Rep. 167. 61 pp.Google Scholar
Hsiao, C., and Hsiao, T.H. 1985. Rickettsia as the cause of cytoplasmic incompatibility in the alfalfa weevil, Hypera postica (Gyllenhal). J. Invertebr. Pathol. 45: 244246.CrossRefGoogle Scholar
Hsiao, T.H. 1991. Geographic and genetic variation among alfalfa weevil strains. In Kim, K.C. (Ed.), Evolution of Insect Pests: The Pattern of Variation. John Wiley & Sons, Inc., New York, NY. In press.Google Scholar
Maund, C.M. 1989. Evaluation of the effectiveness of two Bathyplectes parasitoids among alfalfa weevil strains (Hypera postica (Gyllenhal)). M.S. thesis, Utah State Univ., Logan. UT. 86 pp.Google Scholar
Puttler, B. 1967. Interrelationship of Hypera postica (Coleoptera: Curculionidae) and Bathyplectes curculionis (Hymenoptera: Ichneumonidae) in the eastern United States with particular reference to encapsulation of the parasite eggs by the weevil larvae. Ann. ent. Soc. Am. 61: 10311038.CrossRefGoogle Scholar
Salt, G., and van den Bosch, R.. 1967. The defense reactions of three species of Hypera (Coleoptera: Curculionidae) to an ichneumon wasp. J. Invertebr. Pathol. 9: 164177.CrossRefGoogle Scholar
van den Bosch, R. 1964. Encapsulation of the eggs of Bathyplectes curculionis (Thomson) (Hymenoptera: Ichneumonidae) in larvae of Hypera brunneipennis (Boheman) and Hypera postica (Gyllenhal) (Coleoptera: Curculionidae). J. Insect Pathol. 6: 343367.Google Scholar
van den Bosch, R., and Dietrick, E.J.. 1959. The interrelationships of Hypera brunneipennis (Coleoptera: Curculionidae) and Bathyplectes curculionis (Hymenoptera: Ichneumonidae) in southern California. Ann. ent. Soc. Am. 52: 609616.CrossRefGoogle Scholar