Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T00:00:19.012Z Has data issue: false hasContentIssue false

DIFFERENTIAL RESPONSE OF TWO AGROECOSYSTEM PREDATORS, PTEROSTICHUS MELANARIUS (COLEOPTERA: CARABIDAE) AND COCCINELLA SEPTEMPUNCTATA (COLEOPTERA: COCCINELLIDAE), TO HABITAT-COMPOSITION AND FRAGMENTATION-SCALE MANIPULATIONS

Published online by Cambridge University Press:  31 May 2012

John E. Banks
Affiliation:
Department of Zoology, Box 351800, University of Washington, Seattle, Washington, USA 98195-1800

Abstract

Using alternating patches of weeds and crop [broccoli, Brassica oleracea (L.) (Brassicaceae)], vegetation composition and the spatial scale at which the vegetation was fragmented were manipulated in a factorial design field experiment. The effects of these manipulations were different for two common agroecosystem predators sampled. Sevenspotted lady beetles, Coccinella septempunctata (L.), were unaffected by vegetation-composition treatments but responded strongly to fragmentation-scale manipulations. The beetle Pterostichus melanarius (Illiger) was unaffected by both fragmentation-scale and vegetation-composition manipulations. These findings highlight the challenge of developing a predictive theory of the effects of vegetation diversification on assemblages of predators in agroecosystems.

Résumé

Lors d’une expérimentation dans les plantations utilisant la méthode factorielle, j’ai manipulé la composition de la végétation de même que l’échelle spatiale à laquelle la végétation a été fragmentée en utilisant alternativement des zones de broccoli [Brassica oleracea (L.) (Brassicaceae)] et de mauvaises herbes. Les effets de ces manipulations se sont avérés différents pour les deux prédateurs communs échantillonés dans l’agro-écosystème. La coccinelle à sept points, Coccinella septempunctata (L.), s’est montrée insensible aux traitements de la composition, mais a réagi fortement aux manipulations de l’échelle de fragmentation. La carabe Pterostichus melanarius (Illiger) s’est montrée indifférent aux manipulations de la composition de la végétation ainsi qu’à celles de l’échelle de fragmentation. Ces résultats soulignent les difficultés inhérentes au développement d’une théorie prophétique des effets de la diversité de la végétation sur les asssociations des prédateurs dans les agro-écosystèmes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andow, D. 1983. The extent of monoculture and its effects on insect pest populations with particular reference to wheat and cotton. Agriculture, Ecosystems, and Environment 9: 2535CrossRefGoogle Scholar
Andow, D. 1991. Vegetational diversity and arthropod population response. Annual Review of Entomology 36: 561–86CrossRefGoogle Scholar
Angalet, G.W., Tropp, J.M., Eggert, A.N. 1979. Coccinella septempunctata in the United States: recolonization and notes on its ecology. Environmental Entomology 8: 896901CrossRefGoogle Scholar
Banks, J.E. 1998. The scale of landscape fragmentation affects herbivore response to vegetation heterogeneity. Oecologia 117: 239–46.Google Scholar
Banks, J.E. 1999. Natural vegetation in agroecosystems: pattern and scale of heterogeneity. In Ekbom, B. (Ed.), Interchanges of Insects Between Agricultural and Surrounding Landscapes. Dordrecht: Kluwer Academic Publishers. In pressGoogle Scholar
Bryan, K.M., Wratten, S.D. 1984. The response of polyphagous predators to prey spatial heterogeneity: aggregation by carabid and staphylinid beetles to their cereal aphid prey. Ecological Entomology 9: 251–59CrossRefGoogle Scholar
Cárcamo, H.A., Spence, J.R. 1994. Crop type effects on the activity and distribution of ground beetles (Coleoptera: Carabidae). Environmental Entomology 23: 684–92Google Scholar
Carter, M.C., Dixon, A.F.G. 1984. Honeydew: an arrestant stimulus for coccinellids. Ecological Entomology 9: 383–87Google Scholar
Chang, G.C. 1996. Comparison of single versus multiple species of generalist predators for biological control. Environmental Entomology 25: 207–12Google Scholar
Chiverton, P.A., Sotherton, N.W. 1991. The effects on beneficial arthropods of the exclusion of herbicides from cereal crop edges. Journal of Applied Ecology 28: 1027–39CrossRefGoogle Scholar
Colunga-Garcia, M., Gage, S.H., Landis, D.A. 1997. Response of an assemblage of coccinellidae (Coleoptera) to a diverse agricultural landscape. Environmental Entomology 26: 797804CrossRefGoogle Scholar
Corbett, A., Plant, R.E. 1993. Role of movement in the response of natural enemies to agroecosystem diversification: a theoretical evaluation. Environmental Entomology 22: 519–31Google Scholar
Dennis, P., Fry, G.L.A. 1992. Field margins: can they enhance natural enemy population densities and general arthropod diversity on farmland? Agriculture, Ecosystems, and Environment 40: 95115Google Scholar
Digweed, S.C., Currie, C.R., Carcamo, H.A., Spence, J.R. 1995. Digging out the “digging-in effect” of pitfall traps: influences of depletion and disturbance on catches of ground beetles (Coleoptera: Carabidae). Pedobiologia 39: 561–76CrossRefGoogle Scholar
Elliott, N., Kieckhefer, R., Kauffman, W. 1996. Effects of an invading coccinellid on native coccinellids in an agricultural landscape. Oecologia 105: 537–44CrossRefGoogle Scholar
Fagan, W.F., Cantrell, R.S., Cosner, C. 1999. How habitat edges change species interactions. American Naturalist 153: 165–82CrossRefGoogle ScholarPubMed
Gause, G.F. 1934. The Struggle for Existence. New York: Macmillan (Hafner Press)CrossRefGoogle ScholarPubMed
Gordon, P.L., McKinlay, R.G. 1986. Dispersal of ground beetles in a potato crop: a mark–release study. Entomologia Experimentalis et Applicata 40: 104–5CrossRefGoogle Scholar
Greenslade, P.G.M. 1964. Pitfall trapping as a method for studying populations of carabidae (Coleoptera). Journal of Animal Ecology 33: 301–10CrossRefGoogle Scholar
Gross, H.R. Jr. 1987. Conservation and enhancement of entomophagous inseccts — a perspective. Journal of Entomological Science 22: 97105CrossRefGoogle Scholar
Hagen, K.S. 1962. Biology and ecology of predaceous coccinellidae. Annual Review of Entomology 7: 289326CrossRefGoogle Scholar
Honek, A. 1988. The effect of crop density and microclimate on pitfall trap catches of Carabidae, Staphylinidae (Coleoptera), and Lycosidae (Araneae) in cereal fields. Pedobiologia 32: 233–42CrossRefGoogle Scholar
Huffaker, C.B. 1958. Experimental studies on predation: dispersion factors and predator–prey oscillations. Hilgardia 27: 343–83CrossRefGoogle Scholar
Kareiva, P. 1987. Habitat fragmentation and the stability of predator–prey interactions. Nature (London) 326: 388–90CrossRefGoogle Scholar
Kruess, A., Tscharntke, T. 1994. Habitat fragmentation, species loss, and biological control. Science (Washington, D.C. ) 264: 1581–84CrossRefGoogle ScholarPubMed
Landis, D.A., Haas, M.J. 1992. Influence of landscape structure on abundance and within-field distribution of European corn borer (Lepidoptera: Pyralidae) larval parasitoids in Michigan. Environmental Entomology 21: 409–16CrossRefGoogle Scholar
Letourneau, D.K. 1987. The enemies hypothesis: tritrophic interactions and vegetation diversity in tropical agroecosystems. Ecology 68: 1616–22Google Scholar
Letourneau, D.K.., Altieri, M.A. 1983. Abundance patterns of a predator, Orius tristicolor (Hemiptera: Anthocoridae), and its prey, Frankliniella occidentalis (Thysanoptera: Thripidae): habitat attraction in polycultures versus monocultures. Environmental Entomology 12: 1464–69Google Scholar
Lindroth, C.H. 1957. The Faunal Connections Between Europe and North America. New York: WileyGoogle Scholar
Losey, J.E., Denno, R.E. 1998 a. The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behavior. Ecological Entomology 23: 5361CrossRefGoogle Scholar
Losey, J.E., Denno, R.E. 1998 b. Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79: 2143–52Google Scholar
Lovei, G.L., Sunderland, K.D. 1996. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology 41: 231–56Google Scholar
Luckinbill, L.S. 1973. Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum. Ecology 54: 1320–27CrossRefGoogle Scholar
Marino, P.C., Landis, D.A. 1996. Effect of landscape structure on parasitoid diversity and parasitism on agroecosystems. Ecological Applications 6: 276–84CrossRefGoogle Scholar
Niemelä, J., Haila, Y., Halme, E., Lahti, T., Pajunen, T., Punttila, P. 1988. The distribution of carabid beetles in fragments of old coniferous taiga and adjacent managed forest. Annales Zoologici Fennici 25: 107–19Google Scholar
Obrycki, J.J., Giles, K.L., Ormord, A.M. 1998. Interactions between an introduced and indigenous coccinellid species at different prey densities. Oecologia 117: 279–85CrossRefGoogle ScholarPubMed
Risch, S.J., Andow, D., Altieri, M.A. 1983. Agroecosystem diversity and pest control: data, tentative conclusions, and new research directions. Environmental Entomology 12: 625–29Google Scholar
Rivard, I. 1966. Ground beetles (Coleoptera: Carabidae) in relation to agricultural crops. The Canadian Entomologist 98: 189–95CrossRefGoogle Scholar
Roland, J., Taylor, P.D. 1997. Insect parasitoid species respond to forest structure at different spatial scales. Nature (London) 386: 710–13Google Scholar
Root, R.B. 1973. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs 43: 95124CrossRefGoogle Scholar
Russell, E.P. 1989. Enemies hypothesis: a review of the effect of vegetational diversity on predatory insects and parasitoids. Environmental Entomology 18: 590–99Google Scholar
Scheiner, S.M. 1993. MANOVA: multiple response variables and multispecies interactions. pp. 94112in Scheiner, S.M., Gurevitch, J. (Eds.), Design and Analysis of Ecological Experiments. New York: Chapman and HallGoogle Scholar
Sheehan, W. 1986. Response by specialist and generalist natural enemies to agroecosystem diversification: a selective review. Environmental Entomology 15: 456–61Google Scholar
Spence, J.R., Niemelä, J.K. 1994. Sampling carabid assemblages with pitfall traps: the madness and the method. The Canadian Entomologist 126: 881–94Google Scholar
Stinner, B.F., House, G.J. 1990. Arthropods and other invertebrates in conservation-tillage agriculture. Annual Review of Entomology 35: 299318Google Scholar
Tonhasca, A. Jr. 1993. Carabid beetle assemblage under diversified agroecosystems. Entomologia Experimentalis et Applicata 68: 279–85Google Scholar
Tonhasca, A. Jr., Byrne, D.A. 1994. The effects of crop diversification on herbivorous insects: a meta-analysis approach. Ecological Entomology 19: 239–44Google Scholar
von Ende, C.N. 1993. Repeated-measures analysis: growth and other time-dependent measures. pp. 113137in Scheiner, S.M., Gurevitch, J. (Eds.), Design and Analysis of Ecological Experiments. New York: Chapman and HallGoogle Scholar
Wallin, H., Ekbom, B. 1988. Movements of carabid beetles (Coleoptera: Carabidae) inhabiting cereal fields: a field tracing study. Oecologia 77: 3943Google Scholar
Wallin, H., Ekbom, B. 1994. Influence of hunger level and prey densities on movement patterns in three species of Pterostichus beetles (Coleoptera: Carabidae). Environmental Entomology 23: 1171–81CrossRefGoogle Scholar
Wallin, H., Chiverton, P.A., Ekbom, B.S., Borg, A. 1992. Diet, fecundity and egg size in some polyphagous predatory carabid beetles. Entomologia Experimentalis Applicata 65: 129–40CrossRefGoogle Scholar
Wilkinson, L. 1992. SYSTAT: Statistics, Version 5.2. Evanston: Systat IncorporatedGoogle Scholar