Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T17:45:25.309Z Has data issue: false hasContentIssue false

DISTRIBUTION OF BARBARA COLFAXIANA (KEARFOTT) (LEPIDOPTERA: TORTRICIDAE) EGGS WITHIN AND AMONG DOUGLAS-FIR CROWNS AND METHODS FOR ESTIMATING EGG DENSITIES

Published online by Cambridge University Press:  31 May 2012

J.D. Sweeney
Affiliation:
Forestry Canada, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
G.E. Miller
Affiliation:
Forestry Canada, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5

Abstract

The spatial and frequency distributions of Douglas-fir cone moth, Barbara colfaxiana (Kearfott), eggs in Douglas-fir trees and stands were determined by dissecting 13 262 conelets collected from 81 trees in three sites and 2 years. There were no consistent trends in egg density associated with crown level or aspect. The frequency distribution of eggs per conelet fitted the negative binomial in three of five site-years but a common k for the negative binomial could not be calculated. Green’s index of aggregation suggested that the cone moth egg distribution was significantly aggregated in each site-year.

The optimal number of conelets per tree to sample was determined to be four in forest stands and three in seed orchards. The number of sample trees required for estimating mean egg density with 10% and 20% precision and 90% confidence was calculated for a range of mean egg densities using the method of Kuno. The sample sizes required to estimate a control threshold density of 0.6 eggs per conelet with 10% precision and 90% confidence were very large and would be impractical for operational use. Therefore, a sequential sampling plan was developed for use in seed orchards that would classify cone moth egg densities as either above or below a critical density at which 10% seed loss would be expected.

Résumé

Cônelets (13 262) cueillis au cours de 2 années différentes dans 81 arbres poussant dans trois stations ont été disséqués pour déterminer la distribution spatiale et de fréquence des oeufs du perce-cône du Douglas (Barbara colfaxiana [Kearfoot]) dans des arbres et des peuplements de Douglas taxifoliés. Aucune tendance régulière de la densité des oeufs associé à la hauteur de prélèvement dans le houppier ou à l’aspect de la cime n’a été relevée. La distribution de fréquence des oeufs par cônelet s’ajustait à la distribution binomiale négative dans trois des cinq combinaisons station-année, mais aucun k commun n’a pu être calculé pour la distribution binomiale négative. L’indice d’agrégation de Green laisee supposer que la distribution des oeufs du perce-cône était concentrée de façon significative dans chaque combinaison station-année.

Il a été déterminé que le nombre optimal de cônelets par arbre à échantillonner était de quatre dans les peuplements forestiers et de trois dans les vergers à graines. Nous avons calculé que le nombre d’arbres-échantillons nécessaire pour estimer la densité moyenne des oeufs à un degré de précision de 10 et 20% et à un seuil de confiance de 90% à l’aide de la méthode de Kuno pour une gamme de densités moyennes d’oeufs. La taille des échantillons nécessaires pour estimer une densité-témoin limite de 0,6 oeufs par cônelet à un degré de précision de 10% et à un seuil de confiance de 90% était trop considérable pour être utilisable de façon opérationnelle. Nous avons donc élaboré un plan d’échantillonnage séquentiel pour les vergers à graines qui permet de classer la densité des oeufs du perce-cône comme étant supérieure ou inférieure à une densité critique à laquelle il faut s’attendre à une perte de 10% des graines.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bliss, C.I., and Owen, A.R.G.. 1958. Negative binomial distribution with a common k. Biometrika 45: 3758.CrossRefGoogle Scholar
Cochran, W.G. 1977. Sampling Techniques, 3rd ed. John Wiley and Sons, Toronto. 428 pp.Google Scholar
Davies, R.G. 1971. Computer Programming in Quantitative Biology. Academic Press, London. 492 pp.Google Scholar
Fisher, R.A. 1953. Note on the efficient fitting of the negative binomial. Biometrics 9: 197200.Google Scholar
Green, R.H. 1966. Measurement of non-randomness in spatial distributions. Res. Popul. Ecol. 8: 17.CrossRefGoogle Scholar
Hedlin, A.F. 1960. On the life history of the Douglas-fir cone moth, Barbara colfaxiana (Kft.) (Lepidoptera: Olethreutidae), and one of its parasites, Glypta evetriae Cush. (Hymenoptera: Ichneumonidae). Can. Ent. 92: 826834.CrossRefGoogle Scholar
Hedlin, A.F. 1966. Prevention of insect-caused seed loss in Douglas-fir with systemic insecticides. For. Chron. 42: 7682.CrossRefGoogle Scholar
Hedlin, A.F., Yates, H.O. III, Tovar, D. Cibrian, Ebel, B.H., Koerber, T.W., and Merkel, E.P.. 1980. Cone and seed insects of North American conifers. Can. For. Serv./USDA For. Serv./Secr. Agric. Recur. Hidraul, Mexico. Victoria, British Columbia. 122 pp.Google Scholar
Iwao, S. 1968. A new regression method of analyzing the aggregation pattern of animal populations. Res. Popul. Ecol. 10: 120.CrossRefGoogle Scholar
Iwao, S. 1975. A new method of sequential sampling to classify populations relative to a critical density. Res. Popul. Ecol. 16: 281288.CrossRefGoogle Scholar
Kozak, A. 1963. Analysis of some factors associated with distribution and intensity of attack by cone and seed insects in Douglas-fir. Ph.D. dissertation, Univ. B.C., Vancouver, British Columbia. 179 pp.Google Scholar
Kuno, E. 1969. A new method of sequential sampling to obtain the population estimates with a fixed level of precision. Res. Popul. Ecol. 11: 127136.CrossRefGoogle Scholar
Lloyd, M. 1967. Mean crowding. J. Anim. Ecol. 36: 130.CrossRefGoogle Scholar
Miller, G.E. 1983. When is controlling cone and seed insects in Douglas-fir seed orchards justified? For. Chron. 59: 304307.CrossRefGoogle Scholar
Miller, G.E. 1986 a. Distribution of Contarinia oregonensis Foote (Diptera: Cecidomyiidae) eggs in Douglas-fir seed orchards and a method for estimating egg density. Can. Ent. 118: 12911295.CrossRefGoogle Scholar
Miller, G.E. 1986 b. Damage prediction for Contarinia oregonensis Foote (Diptera: Cecidomyiidae) in Douglas-fir seed orchards. Can. Ent. 118: 12971306.CrossRefGoogle Scholar
Nebeker, T.E. 1977. A partial life table for the Douglas-fir cone moth, Barbara colfaxiana (Lepidoptera: Olethreutidae). Can. Ent. 109: 943951.CrossRefGoogle Scholar
Nebeker, T.E., and Overton, W.S.. 1979. Systematic variable probability sampling for estimating a Douglas-fir cone population. pp. 1–5 in Waters, W.E. (Ed.), Current Topics in Forest Entomology, Selected Papers from the XVth International Congress of Entomology. U.S.D.A. For. Serv. Gen. Tech. Rep. WO-8. 174 pp.Google Scholar
Nyrop, J.P., and Simmons, G.A.. 1984. Errors incurred when using Iwao's sequential decision rule in insect sampling. Environ. Ent. 13: 14591465.CrossRefGoogle Scholar
Shepherd, R.F., Otvos, I., and Chorney, R.J.. 1984. Pest management of Douglas-fir tussock moth (Lepidoptera: Lymantriidae): a sequential sampling method to determine egg mass density. Can. Ent. 116: 10411049.CrossRefGoogle Scholar
Southwood, T.R.E. 1966. Ecological Methods. Methuen & Co. London. 391 pp.Google Scholar
Turgeon, J.J., and Régnière, J.. 1987. Development of sampling techniques for the spruce budmoth, Zeiraphera canadensis Mut. and Free. (Lepidoptera: Tortricidae). Can. Ent. 119: 239249.CrossRefGoogle Scholar