Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T23:42:09.225Z Has data issue: false hasContentIssue false

Effect of certain monounsaturated dodecene and tetradecene acetates and alcohols on electroantennogram response and pheromone-mediated trap catch of the obliquebanded leafroller

Published online by Cambridge University Press:  02 April 2012

R.M. Trimble*
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, P.O. Box 6000, Vineland Station, Ontario, Canada L0R 2E0
Ashraf M. El-Sayed
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, P.O. Box 6000, Vineland Station, Ontario, Canada L0R 2E0
*
1 Corresponding author (e-mail: trimbler@agr.gc.ca).

Abstract

The effect of certain monounsaturated dodecene and tetradecene acetates and alcohols on electroantennogram (EAG) response and pheromone-mediated trap catch was examined in male obliquebanded leafroller moths, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). The stimulation of antennae with 0.1 ng of (Z)-11-tetradecenyl acetate (Z11-14:Ac), the major pheromone compound of this species, elicited an EAG response. The use of 1 ng of (Z)-9-tetradecenyl acetate (Z9-14:Ac) or (E)-9-tetradecenyl acetate (E9-14:Ac) or 10 ng of (Z)-9-dodecenyl acetate (Z9-12:Ac) or (E)-9-dodecenyl acetate (E9-12:Ac) was required to elicit a response. One hundred nanograms of (E)-9-tetradecenol (E9-14:OH) were required to elicit a response from antennae. The stimulation of antennae with up to 100 ng of (Z)-9-tetradecenol (Z9-14:OH) did not elicit a response. The addition of 0.1 mg of Z9-12:Ac to 1 mg of synthetic C. rosaceana pheromone consisting of a 100:2:1.5:1 blend of Z11-14:Ac, (E)-11-tetradecenyl acetate, (Z)-11-tetradecenol, and (Z)-11-tetradecenal reduced the capture of moths in pheromone-baited traps by more than 72%. Trap catch was reduced by more than 90% by the addition of 0.01 mg of Z9-14:Ac or E9-14:Ac to 1 mg of C. rosaceana pheromone. There was no detectable reduction in trap catch when 1 mg of E9-12:Ac, Z9-14:OH, or E9-14:OH was added to 1 mg of C. rosaceana pheromone. There was a greater than 95% reduction in trap catch when sources of Z9- or E9-12:Ac were mounted at the entrances to traps, 10 cm from the pheromone source. Trap catch was not affected by placing sources of Z9- or E9-14:Ac at trap entrances. Four 1 or 10 mg sources of E9-14:Ac placed 1 m from a trap did not affect the number of male C. rosaceana captured. The study demonstrates that although a compound may have profound attraction inhibiting activity when mixed directly with C. rosaceana pheromone, this activity may be lost if the inhibitor is emitted a short distance from the pheromone. The study also demonstrates that a potent attraction inhibitor such as E9-14:Ac does not repel C. rosaceana males and must be present along with pheromone to affect the behavior of this species.

Résumé

Nous avons étudié les effets de certains acétates et alcools dodécènes et tétradécènes monoinsaturés sur les résultats de l'électroantennogramme (EAG) et sur les captures aux pièges munis de phéromones chez les mâles de la tordeuse à bandes obliques, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). La stimulation de l'antenne à l'aide de 0,1 ng d'acétate de (Z)-11-tétradécényle (Z11-14:Ac), la composante principale de la phéromone chez cette espèce, produit une réaction à l'EAG. L'utilisation de 1 ng d'acétate de (Z)-9-tétradécényle (Z9-14:Ac) ou d'acétate de (E)-9-tétradécényle (E9-14:Ac) et de 10 ng d'acétate de (Z)-9-dodécényle (Z9-12:Ac) ou d'acétate de (E)-9-dodécényle (E9-12:Ac) est nécessaire pour provoquer une réaction. Il faut 100 ng de (E)-9-tétradécénol (E9-14:OH) pour susciter une réaction antennaire. La stimulation de l'antenne par des quantités aussi élevées que 100 ng de (Z)-9-tétradécénol (Z9-14:OH) ne provoque aucune réaction. L'addition de 0.1 mg de Z9-12:Ac à 1 mg de phéromone synthétique de C. rosaceana — composée d'un mélange dans des proportions de 100:2:1,5:1 de Z11-14:Ac, d'acétate de (E)-11-tétradécényle (E11-14:Ac), de (Z)-11-tétradécénol (Z11-14:OH) et de (Z)-11-tétradécénal (Z11-14:Al) — réduit les captures aux pièges à phéromone par plus de 72 %. L'addition de 0,01 mg de Z9-14:Ac ou de E9-14:Ac à 1 mg de phéromone réduit les captures aux pièges par plus de 90 %. Il ne se produit pas de réduction décelable des captures à l'addition de 1 mg de E9-12:Ac, de Z9-14:OH ou de E9-14:OH à 1 mg de phéromone. Si l'on place des sources de Z9- ou E9-12:Ac à l'entrée des pièges, à 10 cm de la source de phéromone, il se produit une réduction de plus de 95 % des captures au piège. Les captures au piège ne sont pas réduites par l'addition d'une source de Z9- ou E9-14:Ac à l'entrée du piège. L'installation de quatre sources de 1 ou 10 mg de E9-14:Ac à 1 m d'un piège n'affecte pas le nombre de mâles de C. rosaceana capturés. Notre étude démontre que, bien qu'un produit puisse avoir une activité élevée d'inhibition de l'attraction lorsque mêlé directement à la phéromone de C. rosaceana, cette activité peut être perdue lorsque l'inhibiteur est émis à une courte distance de la phéromone. Elle démontre aussi qu'un puissant inhibiteur de l'attraction comme E9-14:Ac ne repousse pas les mâles de C. rosaceana et qu'il doit accompagner la phéromone pour affecter le comportement de cette espèce.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bäckmann, A.-C., Anderson, P., Bengtsson, M., Löfqvost, J., Unelius, C.R., and Witzgall, P. 2000. Antennal response of codling moth males, Cydia pomonella L. (Lepidoptera: Tortricidae), to the geometric isomers of codlemone and codlemone acetate. Journal of Comparative Physiology A, 186: 513519.Google Scholar
Bjostad, L., Linn, C., Roelofs, W., and Du, J.W. 1985. Identification of new sex pheromone components in Trichoplusia ni and Agryrotaenia velutinana, predicted from biosynthetic precursors. In Semiochemistry: Flavors and Pheromones: Proceedings, American Chemical Society Symposium, Washington, D.C., August 1983. Edited by Acree, T.E. and Soderlund, D.M.. Walter de Gruyter, Berlin, New York. pp. 223237.Google Scholar
Cardé, R.T., and Baker, T.C. 1984. Sexual communication with pheromones. In Chemical ecology of insects. Edited by Bell, W.J. and Cardé, R.T.. Chapman and Hall Ltd., London. pp. 355383.CrossRefGoogle Scholar
Cardé, R.T., Cardé, A.M., Hill, A.S., and Roelofs, W.L. 1977. Sex pheromone specificity as a reproductive isolating mechanism among the sibling species Archips argyrospilus and A. mortuanus and other sympatric Tortricine moths (Lepidoptera: Tortricidae). Journal of Chemical Ecology, 3: 7184.CrossRefGoogle Scholar
Chapman, P.J., and Lienk, S.E. 1971. Tortricid fauna of apple in New York. New York State Agricultural Experiment Station, Geneva, New York.Google Scholar
Deland, J.-P., Gries, R., Gries, G., Judd, G.J.R., and Roitberg, B.D. 1993. Sex pheromone components of the fruit-tree leaf roller, Archips argyrospilus (Walker) (Lepidoptera: Tortricidae), in British Columbia. Journal of Chemical Ecology, 19: 28552864.CrossRefGoogle ScholarPubMed
El-Sayed, A.M. 2005. The Pherobase: database of insect pheromones and semiochemicals [online]. Available from http://www.pherobase.com.Google Scholar
El-Sayed, A.M., Fraser, H.W., and Trimble, R.M. 2001. Chemical identification and behavioral activity of (Z)-11-tetradecenal in an eastern North American population of the obliquebanded leafroller. The Canadian Entomologist, 133: 365374.CrossRefGoogle Scholar
El-Sayed, A.M., Delisle, J., DeLury, N., Gut, L.J., Judd, G.J.R., Legrand, S., Reissig, W.H., Roelofs, W.L., Unelius, C.R., and Trimble, R.M. 2003. Geographic variation in pheromone chemistry, antennal electrophysiology and pheromonemediated trap catch of North American populations of the obliquebanded leafroller. Environmental Entomology, 32: 470476.CrossRefGoogle Scholar
Evenden, M.L., Judd, G.J.R., and Bordon, J.H. 1999 a. A synomone imparting distinct sex pheromone communication channels for Choristoneura rosaceana (Harris) and Pandemis limitata (Robinson) (Lepidoptera: Tortricidae). Chemoecology, 9: 7380.CrossRefGoogle Scholar
Evenden, M.L., Judd, G.J.R., and Bordon, J.H. 1999 b. Simultaneous disruption of pheromone communication in Choristoneura rosaceana and Pandemis limitata with pheromone and antagonist blends. Journal of Chemical Ecology, 25: 501517.CrossRefGoogle Scholar
Evenden, M.L., Judd, G.J.R., and Bordon, J.H. 1999 c. Mating disruption of two sympatric, orchard-inhabiting tortricids, Choristoneura rosaceana and Pandemis limitata (Lepidoptera: Tortricidae), with pheromone components of both species' blends. Journal of Economic Entomology, 92: 380390.CrossRefGoogle Scholar
Hathaway, D.O., Moffitt, H.R., and George, D.A. 1985. Codling moth (Lepid.: Tortricidae): disruption of sexual communication with an antipheromone [(E, E )-8,10-dodecadien-1-ol acetate]. Journal of the Entomological Society of British Columbia, 82: 1822.Google Scholar
Hill, A.S., and Roelofs, W.L. 1979. Sex pheromone components of the obliquebanded leafroller moth, Choristoneura rosaceana. Journal of Chemical Ecology, 5: 311.CrossRefGoogle Scholar
Linn, C.E. Jr., and Roelofs, W.L. 1995. Pheromone communication in the moths and its role in the speciation process. In Speciation and the recognition concept: theory application. Edited by Lambert, D.H. and Spenser, H.. Johns Hopkins University Press, Baltimore and London. pp. 263300.Google Scholar
Liu, Y.-B., and Haynes, K.F. 1992. Filamentous nature of pheromone plumes protects integrity of signal from background chemical noise in cabbage looper moth, Trichoplusia ni. Journal of Chemical Ecology, 18: 299307.CrossRefGoogle ScholarPubMed
Minks, A.K., Voerman, S., and Klun, J.A. 1976. Disruption of pheromone communication with microencapsulated antipheromones against Adoxophyes orana. Entomologia Experimentalis et Applicata, 20: 163169.CrossRefGoogle Scholar
Priesner, E., and Witzgall, P. 1984. Modification of pheromonal behaviour in wild Coleophora laricella male moths by (Z)-5-decenyl acetate, an attraction-inhibitor. Journal of Applied Entomology, 98: 118135.Google Scholar
Roelofs, W.L., and Comeau, A. 1971. Sex pheromone perception: synergists and inhibitors for the red-banded leaf roller attractant. Journal of Insect Physiology, 17: 435448.CrossRefGoogle Scholar
Roelofs, W.L., and Tette, J.P. 1970. Sex pheromone of the oblique-banded leafroller moth. Nature (London), 226: 1172.CrossRefGoogle Scholar
Roelofs, W.L., Cardé, A., Hill, A., and Cardé, R. 1976. Sex pheromone of the threelined leafroller, Pandemis limitata. Environmental Entomology, 5: 649652.CrossRefGoogle Scholar
Rumbo, E.R., Deacon, S.M., and Regan, L.P. 1993. Spatial discrimination between sources of pheromone and an inhibitor in the light-brown apple moth Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae). Journal of Chemical Ecology, 19: 953962.CrossRefGoogle Scholar
SAS Institute Inc. 1998. Statview. SAS Institute Inc., Cary, North Carolina.Google Scholar
Suckling, D.M., and Burnip, G.M. 1996. Orientation disruption of Planotortrix octo using pheromone or inhibitor blends. Entomologia Experimentalis et Applicata, 78: 149158.CrossRefGoogle Scholar
Trimble, R.M. 1995. Mating disruption for controlling the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in organic apple production in southwestern Ontario. The Canadian Entomologist, 127: 493505.CrossRefGoogle Scholar
Trimble, R.M., and Appleby, M.E. 2004. Comparison of efficacy of programs using insecticide and insecticide plus mating disruption for controlling the obliquebanded leafroller in apple (Lepidoptera: Tortricidae). Journal of Economic Entomology, 97: 518524.CrossRefGoogle ScholarPubMed
Vakenti, J.M., Gaunce, A.P., Slessor, K.N., King, G.G.S., Allan, S.A., Madsen, H.F., and Borden, J.H. 1988. Sex pheromone components of the obliquebanded leafroller, Choristoneura rosaceana, in the Okanagan Valley of British Columbia. Journal of Chemical Ecology, 14: 605621.CrossRefGoogle ScholarPubMed
Witzgall, P., and Priesner, E. 1991. Wind-tunnel study on attraction inhibitor in male Coleophora laricella Hbn. (Lepidoptera: Coleophoridae). Journal of Chemical Ecology, 17: 13551362.CrossRefGoogle Scholar
Witzgall, P., Bäckman, A.-C., Svensson, M., Kock, U., Rama, F., El-Sayed, A., Brauchli, J., Arn, H., Bengtsson, M., and Löfqvist, J. 1999. Behavioral observations of codling moth, Cydia pomonella, in orchards permeated with synthetic pheromone. BioControl, 44: 211237.CrossRefGoogle Scholar
Zar, J.H. 1999. Biostatistical analysis. 4th ed. Prentice-Hall Inc., Upper Saddle River, New Jersey.Google Scholar