Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T14:24:04.422Z Has data issue: false hasContentIssue false

EFFECT OF DIETARY SERINE ON SURVIVAL AND RATE OF DEVELOPMENT OF ORYZAEPHILUS SURINAMENSIS (COLEOPTERA: SILVANIDAE)1

Published online by Cambridge University Press:  31 May 2012

G. R. F. Davis
Affiliation:
Research Station, Canada Department of Agriculture, Saskatoon, Saskatchewan

Abstract

Newly hatched Oryzaephilus surinamensis (L.) were reared on a chemically-defined diet at 32 ± 2 °C and 75 ± 5% relative humidity. Addition of serine to the diet containing glycine was not beneficial to the insect and became harmful at a concentration greater than 10.0 mg/g. Serine was able to replace glycine almost completely in the glycine-free diet for this insect. The results suggest that glycine, but not alanine or threonine, is the precursor for serine biosynthesis in O. surinamensis. They also suggest that serine and glycine are not completely interconvertible by this organism.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Davis, G. R. F. 1961. Sulfur-containing amino acids in the nutrition of the saw-toothed grain beetle, Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae). J. Nutr. 75: 275278.CrossRefGoogle ScholarPubMed
Davis, G. R. F. 1968. Dietary alanine and proline requirements of the beetle Oryzaephilus surinamensis. J. Insect Physiol. 14: 12471250.CrossRefGoogle Scholar
Gilmour, D. 1961. The biochemistry of insects. Academic Press, New York and London.Google Scholar
Golberg, L., and De Meillon, B.. 1948. The nutrition of the larvae of Aedes aegypti Linnaeus. IV. Protein and amino acid requirements. Bio.chem. J. 43: 379387.Google Scholar
Groot, A. P. de. 1953. Protein and amino acid requirements of the honeybee (Apis mellifica L.). Physiol. Comp. Oecol. 3: 189.Google Scholar
Henry, S. M., and Block, R. J.. 1962. Amino acid synthesis, a ruminant-like effect of the intracellular symbionts of the German cockroach. Fedn. Proc. Fedn. Am. Socs exp. Biol. 21: 9. (Abstr.)Google Scholar
Hinton, T., Noyes, D. T., and Ellis, J.. 1951. Amino acids and growth factors in a chemically-defined medium for Drosophila. Physiol. Zool. 24: 335353.CrossRefGoogle Scholar
House, H. L. 1951. Nutritional studies with Pseudosarcophaga affinis (Fall.), a dipterous parasite of the spruce budworm, Choristoneura fumiferana (Clem.). III. Effects of nineteen amino acids on growth. Can. J. Zool. 32: 351357.Google Scholar
Ishii, S., and Hirano, C.. 1955. Qualitative studies on the essential amino acids for the growth of the larva of the rice stem borer, Chilo simplex Butler, under aseptic conditions. Bull. nat. Inst. agric. Sci. (Japan) Ser. C 5: 3548.Google Scholar
Ito, T., and Arai, N.. 1966. Nutrition of the silkworm, Bombyx mori. XI. Requirements for aspartic and glutamic acids. J. Insect Physiol. 12: 861869.Google Scholar
Kasting, R., Davis, G. R. F., and McGinnis, A. J.. 1962. Nutritionally essential and non-essential amino acids for the prairie grain wireworm, Ctenicera destructor Brown, determined with glucose-U-C14. J. Insect Physiol. 8: 589596.Google Scholar
Kasting, R., and McGinnis, A. J.. 1958. Use of glucose labelled with carbon-14 to determine the amino acids essential for an insect. Nature, Lond. 182: 13801381.CrossRefGoogle ScholarPubMed
Kasting, R., and McGinnis, A. J.. 1964. Amino acid requirements for the wheat stem sawfly determined with glucose-U-C14 after vacuum-infiltration. Can. Ent. 96: 11331137.CrossRefGoogle Scholar
Kasting, R., and McGinnis, A. J.. 1966. Amino acid requirements of Hypodema bovis (L.), determined with glucose-U-C14. Expl Parasit. 19: 249253.Google Scholar
Leclercq, J., and Lopez-Francos, L.. 1964. Nutrition protidique chez Tenebrio molitor L. VI. Essais de remplacement de la caséine par des mélanges artificiels d'acides aminés. Archs int: Physiol. Biochim. 72: 276296.Google Scholar
Lemonde, A., and Bernard, R.. 1951. Nutrition des larves de Tribolium confusum Duval. II. Importance des acides aminés. Can. J. Zool. 29: 8083.Google Scholar
Meister, A. 1965. Biochemistry of the amino acids, 2nd ed. II. Academic Press, New York and London.Google Scholar
Moore, W. 1946. Nutrition of Attagenus (?) sp. Ann. ent. Soc. Am. 39: 513521.CrossRefGoogle Scholar
Robinson, P. 1959. Tests of significance for use in comparison of several means with particular reference to Duncan's multiple range test. Can. Dep. Agric. Proc. Publ. 4.Google Scholar
Sedee, P. D. J. W. 1954. Quantitative amino acid requirements of larvae of Calliphora erythrocephala (Meigen). Acta physiol. pharmacol. Neerl. 3: 262269.Google Scholar
Sedee, P. D. J. W. 1956. Dietetic requirements and intermediary protein metabolism of the larva of Calliphora erythrocephala (Meig.). Ph.D. Thesis, University of Utrecht.Google Scholar
Sedee, P. D. J. W. 1960. Intermediary lipid and amino acid metabolism in germ-free blue-bottle larvae. Archs néerl. Zool. 12: 602605.Google Scholar
Singh, K. R. P., and Brown, A. W. A.. 1957. Nutritional requirements of Aedes aegypti (L.). J. Insect Physiol. 1: 199220.Google Scholar
Stanley, J. 1963. The essence of biometry. McGill University Press, Montreal.CrossRefGoogle Scholar
Vanderzant, E. A. 1958. The amino acid requirements of the pink bollworm. J. econ. Ent. 51: 309311.CrossRefGoogle Scholar
West, E. S., and Todd, W. R.. 1955. Textbook of biochemistry, 2nd ed. Macmillan, New York.Google Scholar