Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T17:56:16.209Z Has data issue: false hasContentIssue false

Effect of greenhouse polyethelene covering on activity level and photo-response of bumble bees

Published online by Cambridge University Press:  31 May 2012

Lora A. Morandin*
Affiliation:
Department of Zoology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
Terence M. Laverty
Affiliation:
Department of Zoology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
Robert J. Gegear
Affiliation:
Department of Zoology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
Peter G. Kevan
Affiliation:
Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
*
1 Corresponding author (e-mail: lmorandi@sfu.ca).

Abstract

We conducted laboratory experiments assessing the relationship between commercial greenhouse polyethylene coverings and bumble bee, Bombus impatiens Cresson (Hymenoptera: Apidae), activity and loss from ventilation systems. Bee activity was measured in four small greenhouses, each with a different polyethylene covering. Bee activity was quantified using photodiode tunnels mounted in the hive entrances. Contrary to commercial greenhouse experiments, there was no difference in bee activity based on covering type. There was a positive linear relationship between temperature in the experimental greenhouses and bee activity. The potential for bee loss through open ventilation systems for five covering types was quantified using a Y-maze decision box. Bees were more attracted to direct light than to light transmitted through ultraviolet (UV) blocking coverings, whereas bees were equally attracted to direct light as they were to UV-transmitting coverings. These experiments suggest that greenhouses with UV-transmitting plastics may result in less bee loss through ventilation systems.

Résumé

Nous avons procédé à des expériences en laboratoire pour évaluer la relation entre les toits de polyéthylène des serres et l’activité des bourdons, Bombus impatiens Cresson (Hymenoptera : Apidae), de même que les pertes par le système de ventilation. L’activité a été mesurée dans quatre petites serres recouvertes de différents types de polyéthylène. L’activité a été quantifiée au moyen de tunnels munis de photodiodes montés à l’entrée des ruches. Contrairement aux expériences sur des serres commerciales, les divers types de toit utilisés ici n’ont pas affecté différemment l’activité des bourdons. Il y avait une relation linéaire positive entre la température dans les serres expérimentales et l’activité des bourdons. La perte potentielle d’insectes par les systèmes de ventilation ouverts a été quantifiée au moyen d’un labyrinthe en Y pour cinq types de toit. Les bourdons étaient plus attirés par la lumière directe que par la lumière transmise à travers des toits qui bloquent les rayons ultraviolets (UV), alors qu’ils étaient attirés autant par les toits qui laissent passer l’UV que par la lumière directe. Ces expériences permettent de croire que les serres à toits de plastique qui laissent passer l’UV occasionnent probablement moins de pertes par les systèmes de ventilation.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrol, D.P. 1990. Pollination activity of alfalfa-pollinating subtropical bees Megachile nana and Megachile flavipes (Hymenoptera: Megachilidae). Tropical Ecology 31: 106–15Google Scholar
Abrol, D.P. 1998. Foraging ecology and behaviour of the alfalfa pollinating bee species Megachile nana (Hymenoptera: Megachilidae). Entomologia Generalis 22: 233–7CrossRefGoogle Scholar
Armbruster, W.S., McCormick, K.D. 1990. Diel foraging patterns of male euglossine bees: ecological causes and evolutionary response by plants. Biotropica 22: 160–71CrossRefGoogle Scholar
Banda, H.J., Paxton, R.J. 1991. Pollination of greenhouse tomatoes by bees. Acta Horticulturae Sinica 288: 194–8Google Scholar
Bertholf, L.M. 1931. Reactions of the honey bee to light. Journal of Agricultural Research in Iceland 42: 379419Google Scholar
Corbet, S.A., Fussell, R.A., Fraser, A., Gunson, C., Savage, A., Smith, K. 1993. Temperature and the pollinating activity of social bees. Ecological Entomology 18: 1730CrossRefGoogle Scholar
Fischbach, K.F. 1979. Simultaneous and successive colour contrast expressed in “slow” phototactic behaviour of walking Drosophila melanogaster. Journal of Comparative Physiology 130: 161–71CrossRefGoogle Scholar
Frisch, K von. 1965. Tanzsprache und Orientierung der Bienen. Berlin: Springer-VerlagCrossRefGoogle Scholar
Helversen, O von, Edrich, W. 1974. The spectral sensitivity of polarized light orientation in the honeybee. Journal of Comparative Physiology 94: 3347Google Scholar
Kaiser, W., Seidl, R., Vollmar, J. 1977. Spectral sensitivities of behavioural patterns in honey bees. Journal of Comparative Physiology 122: 2744Google Scholar
Kevan, P.G. 1979. Vegetation and floral colors revealed by ultraviolet light: interpretational difficulties for functional significance. American Journal of Botany 66: 749–51CrossRefGoogle Scholar
Kevan, P.G. 1983. Floral colours through the insect eye: what they are and what they mean. pp 325in Jones, C.E. and Little, R.J. (Eds), Handbook of experimental pollination biology. Scientific and Academic Editions. New York: Van Nostrand and CoGoogle Scholar
Kevan, P.G., Backhaus, W.G.K. 1998. Color vision: ecology and evolution in making the best of the photic environment. pp 163–83 in Backhaus, Werner GK, Kliegl, Reinhold, Werner, John S (Eds), Color vision: perspectives from different disciplines. New York: Walter de GruyterCrossRefGoogle Scholar
Kevan, P.G., Straver, W.A., Offer, M., Laverty, T.M. 1991. Pollination of greenhouse tomatoes by bumble bees in Ontario. Proceedings of the Entomological Society of Ontario 122: 15–9Google Scholar
Laughlin, S.B. 1976. The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. Journal of Comparative Physiology 111: 221–47CrossRefGoogle Scholar
Lundberg, H. 1980. Effects of weather on foraging-flights of bumblebees (Hymenoptera, Apidae) in a subalpine/alpine area. Holarctic Ecology 3: 104–10Google Scholar
Mazokhin-Porshniakov, G.A. 1969. Insect vision. [Translated from Russian by Roberto and Liliana Masironi.] New York: Plenum PressGoogle Scholar
Menzel, R. 1979. Spectral sensitivity and colour vision in invertebrates. pp 503–80 in Autrum, H. (Ed), Invertebrate photoreceptors. Volume VII/6A. Handbook of sensory physiology. Berlin: Springer-VerlagGoogle Scholar
Menzel, R., Backhaus, W. 1991. Colour vision in insects. pp 268–88 in Gouras, P. (Ed), Vision and visual dysfunction. The perception of colour. London: Macmillan PressGoogle Scholar
Menzel, R., Greggers, U. 1985. Natural phototaxis and its relationship to colour vision in honey bees. Journal of Comparative Physiology 141: 389–93CrossRefGoogle Scholar
Morandin, L.A., Laverty, T.M., Kevan, P.G. 2001 a. Bumble bee (Hymenoptera: Apidae) activity and pollination levels in commercial tomato greenhouses. Journal of Economic Entomology 94: 462–7CrossRefGoogle ScholarPubMed
Morandin, L.A., Laverty, T.M., Kevan, P.G., Khosla, S., Shipp, L. 2001 b. Bumble bee (Hymenoptera: Apidae) activity and loss in commercial tomato greenhouses. The Canadian Entomologist 133: 883–93CrossRefGoogle Scholar
Pearson, S., West, J., Henbest, R. 1997. Putting botrytis in the shade. Grower (London) Nov 13: 1821Google Scholar
Peitsch, D., Fietz, A., Hertel, H.De Souza, J., Ventura, D.F., Menzel, R. 1992. The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology 170: 2340CrossRefGoogle ScholarPubMed
Pressman, E., Shaked, R., Rosenfeld, K., Hefetz, A. 1998. A comparative study of the efficiency of bumble bees and an electric bee in pollinating unheated greenhouse tomatoes. Journal of Horticultural Science and Biotechnology 74: 101–4CrossRefGoogle Scholar
SPSS Inc. 1999. SPSS, version 10.0.0 for Windows. Chicago: SPSS IncGoogle Scholar