Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T05:06:45.718Z Has data issue: false hasContentIssue false

Effect of irradiation on the mating capacity and competitiveness of Drosophila suzukii (Diptera: Drosophilidae) for the development of the sterile insect technique

Published online by Cambridge University Press:  22 June 2020

Geneviève Lanouette
Affiliation:
Institut de recherche et de développement en agroenvironnement, Saint-Bruno-de-Montarville, Québec, J3V 0G7, Canada
Jacques Brodeur
Affiliation:
Institut de recherche en biologie végétale, Université de Montréal, Montréal, Québec, H1X 2B2, Canada
François Fournier
Affiliation:
Collège Montmorency, Laval, Québec, H7N 5H9, Canada
Veronique Martel
Affiliation:
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, PO Box 10380, Station Sainte-Foy, Québec, Québec, G1V 4C7, Canada
Annabelle Firlej*
Affiliation:
Institut de recherche et de développement en agroenvironnement, Saint-Bruno-de-Montarville, Québec, J3V 0G7, Canada
*
*Corresponding author. Email: annabelle.firlej@irda.qc.ca

Abstract

The sterile insect technique is a new approach for the integrated management of Drosophila suzukii Matsumura (Diptera: Drosophilidae), an invasive pest in North America. We evaluated, under laboratory conditions, the mating capacities and success of male D. suzukii, irradiated at a dose of 120 Gy, with and without competition. We also explored the tendency of females to remate depending if their first mate was irradiated or not. We observed that irradiated males have the same mating capacity as control males, copulating with, respectively, 6.4 ± 1.9 females versus 6.9 ± 2.0 females in a 24-hour period. Irradiated males won the competition 37.5% of times, which is not significantly different from competiveness of control males. Female remating can be considered infrequent and not significantly influenced by male treatment: 7.4% of the females first mated with control males and 18.8% of the females first mated with irradiated males remated when given the opportunity two days and four days after the first mating. Latency before mating and mating duration were not significantly influenced by male treatment, but by presence of male competition. Overall, irradiated males thus seem to be as performant as control males, which is an important condition for a successful sterile insect technique programme.

Type
Research Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of the Entomological Society of Canada. Parts of this are a work of Her Majesty the Queen in Right of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Maya Evenden

References

Allinghi, A., Calcagno, G., Petit-Marty, N., Gómez Cendra, P., Segura, D., Vera, T., et al. 2007. Compatibility and competitiveness of a laboratory strain of Anastrepha fraterculus (Diptera: Tephritidae) after irradiation treatment. Florida Entomologist, 90: 2732. https://doi.org/10.1653/00154040(2007)90[27:CACOAL]2.0.CO;2.CrossRefGoogle Scholar
Artiaga-López, T., Hernández, E., Domínguez-Gordillo, J., Moreno, D., and Orozco-Dávila, D. 2004. Mass-production of Anastrepha obliqua at the Moscafrut fruit fly facility, Mexico. In Proceedings of the 6th International Fruit Fly Symposium on Fruit Flies of Economic Importance, Stellenbosch, South Africa, 6–10 May 2002. Edited by B.N. Barnes. Isteg Scientific Publications, Irene, South Africa. Pp. 389392.Google Scholar
Barclay, H.J. 2005. Mathematical models for the use of sterile insects. In Sterile insect technique. Edited by V.A. Dyck, J. Hendrichs, and A.S. Robinson. Springer, Dordrecht, The Netherlands. Pp. 147174.Google Scholar
Bloch Qazi, M.C., Heifetz, Y., and Wolfner, M.F. 2003. The developments between gametogenesis and fertilization: ovulation and female sperm storage in Drosophila melanogaster. Developmental Biology, 256: 195211. https://doi.org/10.1016/S0012-1606(02)00125-2.CrossRefGoogle ScholarPubMed
Bretman, A., Fricke, C., and Chapman, T. 2009. Plastic responses of male Drosophila melanogaster to the level of sperm competition increase male reproductive fitness. Proceedings of the Royal Society of London B: Biological Sciences, 276: 17051711. https://doi.org/10.1098/rspb.2008.1878.CrossRefGoogle Scholar
Chabert, S., Allemand, R., Poyet, M., Eslin, P., and Gibert, P. 2012. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biological Control, 63: 4047. https://doi.org/10.1016/j.biocontrol.2012.05.005.CrossRefGoogle Scholar
Chapman, T., Liddle, L.F., Kalb, J.M., Wolfner, M.F., and Partridge, L. 1995. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature, 373: 241244. https://doi.org/10.1038/373241a0.CrossRefGoogle ScholarPubMed
Cormier, D., Veilleux, J., and Firlej, A. 2015. Exclusion net to control spotted wing drosophila in blueberry fields. International Organization for Biological and Integrated Control-West Palaearctic Regional Section Bulletin, 109: 181184.Google Scholar
Cuthbertson, A.G. and Audsley, N. 2016. Further screening of entomophathogenic fungi and nematodes as control agents for Drosophila suzukii. Insects, 7: 24. https://doi.org/10.3390/insects7020024.CrossRefGoogle Scholar
Cuthbertson, A.G., Blackburn, L.F., and Audsley, N. 2014. Efficacy of commercially available invertebrate predators against Drosophila suzukii. Insects, 5: 952960. https://doi.org/10.3390/insects5040952.CrossRefGoogle ScholarPubMed
Daane, K.M., Wang, X.G., Biondi, A., Miller, B., Miller, J.C., Riedl, H., et al. 2016. First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. Journal of Pest Science, 3: 823835. https://doi.org/10.1007/s10340-016-0740-0.CrossRefGoogle Scholar
Dekker, T., Revadi, S., Mansourian, S., Ramasamy, S., Lebreton, S., Becher, P.G., et al. 2015. Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii. Proceedings of the Royal Society of London B: Biological Sciences, 282: 20143018. https://doi.org/10.1098/rspb.2014.3018.CrossRefGoogle ScholarPubMed
Farnsworth, D., Hamby, K., Bolda, M., Goodhue, R., Williams, J., and Zalom, F. 2016. Economic analysis of revenue losses and control costs associated with the spotted wing drosophila (Drosophila suzukii (Matsumura)) in the California raspberry industry. Pest Management Science, 73: 10831090. https://doi.org/10.1002/ps.4497.CrossRefGoogle Scholar
Fowler, K. and Partridge, L. 1989. A cost of mating in female fruitflies. Nature, 338: 760761. https://doi.org/10.1038/338760a0.CrossRefGoogle Scholar
Fried, M. 1971. Determination of sterile-insect competitiveness. Journal of Economic Entomology, 64: 869872. https://doi.org/10.1093/jee/64.4.869.CrossRefGoogle Scholar
Fuyama, Y. 1979. A visual stimulus in the courtship of Drosophila suzukii. Experientia, 35: 13271328. https://doi.org/10.1007/BF01963987.CrossRefGoogle Scholar
Garbaczewska, M., Billeter, J.C., and Devine, J.D. 2013. Drosophila melanogaster males increase the number of sperm in their ejaculate when perceiving rival males. Journal of Insect Physiology, 59: 306310. https://doi.org/10.1016/j.jinsphys.2012.08.016.CrossRefGoogle ScholarPubMed
Gress, B.E. and Zalom, F.G. 2018. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Management Science, 75: 12701276. https://doi.org/10.1002/ps.5240.CrossRefGoogle Scholar
Gromko, M.H., Newport, M.E.A., and Kortier, M.G. 1984. Sperm dependence of female receptivity to remating in Drosophila melanogaster. Evolution, 38: 12731282.CrossRefGoogle ScholarPubMed
Guerrieri, E., Giorgini, M., Cascone, P., Carpenito, S., and Van Achterberg, C. 2016. Species diversity in the parasitoid genus Asobara (Hymenoptera: Braconidae) from the native area of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae). Public Library of Science One, 11: e0147382. https://doi.org/10.1371/journal.pone.0147382.Google Scholar
Hänninen, L.P. and Pastell, M. 2009. CowLog: open source software for coding behaviors from digital video. Behavior Research Methods, 41: 472476. https://doi.org/10.3758/BRM.41.2.472.CrossRefGoogle ScholarPubMed
Harmer, A.M.T., Radhakrishnan, P., and Taylor, P. 2006. Remating inhibition in female Queensland fruit flies: effects and correlates of sperm storage. Journal of Insect Physiology, 52: 179786. https://doi.org/10.1016/j.jinsphys.2005.10.003.CrossRefGoogle ScholarPubMed
Hauser, M. 2011. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Management Science, 67: 13521357. https://doi.org/10.1002/ps.2265.CrossRefGoogle ScholarPubMed
Helinski, M.E.H. and Knols, B.G.J. 2009. Sperm quantity and size variation in un-irradiated and irradiated males of the Malaria mosquito Anopheles arabiensis Patton. Acta Tropica, 109: 6469. https://doi.org/10.1016/j.actatropica.2008.10.002.CrossRefGoogle ScholarPubMed
Imhof, M., Harr, B., Brem, G., and Schlötterer, C. 1998. Multiple mating in wild Drosophila melanogaster revisited by microsatellite analysis. Molecular Ecology, 7: 915917. https://doi.org/10.1046/j.1365-294x.1998.00382.x.CrossRefGoogle ScholarPubMed
Klassen, W. 2005. Area-wide integrated pest management and the sterile insect technique. In Sterile insect technique. Edited by V.A. Dyck, J. Hendrichs, and A.S. Robinson. Springer, Dordrecht, The Netherlands. Pp. 3968.Google Scholar
Knoll, V., Ellenbroek, T., Romeis, J., and Collatz, J. 2017. Seasonal and regional presence of hymenopteran parasitoids of Drosophila in Switzerland and their ability to parasitize the invasive Drosophila suzukii. Scientific Reports, 7: 40697. https://doi.org/10.1038/srep40697.CrossRefGoogle ScholarPubMed
Kraaijeveld, K. and Chapman, T. 2004. Effects of male sterility on female remating in the Mediterranean fruitfly, Ceratitis capitata. Proceedings of the Royal Society of London B: Biological Sciences, 271: S209S211. https://doi.org/10.1098/rsbl.2003.0116.CrossRefGoogle ScholarPubMed
Krüger, A.P., Schlesener, D.C.H., Martins, L.N., Wollmann, J., Deprá, M., and Garcia, F.R.M. 2019. Radiation effects on Drosophila suzukii (Diptera: Drosphilidae) reproductive behaviour. Journal of Applied Entomology, 143: 8894. https://doi.org/10.1111/jen.12563.CrossRefGoogle Scholar
Lance, D. and McInnis, D. 2005. Biological basis of the sterile insect technique. In Sterile insect technique. Edited by V.A. Dyck, J. Hendrichs, and A.S. Robinson. Springer, Dordrecht, The Netherlands. Pp. 6994.Google Scholar
Lanouette, G., Brodeur, J., Fournier, F., Martel, V., Vreysen, M., Cáceres, C., and Firlej, A. 2017. The sterile insect technique for the management of the spotted wing drosophila, Drosophila suzukii: establishing the optimum irradiation dose. Public Library of Science One, 12: e0180821. https://doi.org/10.1371/journal.pone.0180821.CrossRefGoogle Scholar
Lefebvre, G. and Jonsson, U.B. 1962. Sperm transfer, storage, displacement, and utilization in Drosophila melanogaster. Genetics, 47: 17191736.Google Scholar
Long, C.E., Markow, T.A., and Yaeger, P. 1980. Relative male age, fertility, and competitive mating success in Drosophila melanogaster. Behavior Genetics, 10: 163170. https://doi.org/10.1007/BF01066266.CrossRefGoogle ScholarPubMed
Lux, S., Vilardi, J., Liedo, P., Gaggl, K., Calcagno, G., Munyiri, F., et al. 2002. Effects of irradiation on the courtship behavior of medfly (Diptera, Tephritidae) mass reared for the sterile insect technique. Florida Entomologist, 85: 102112. https://doi.org/10.1653/00154040(2002)085[0102:EOIOTC]2.0.CO;2.CrossRefGoogle Scholar
Manning, A. 1962. A sperm factor affecting the receptivity of Drosophila melanogaster females. Nature, 194: 252253. https://doi.org/10.1038/194252a0.CrossRefGoogle Scholar
Markow, T.A. 2002. Perspective: female remating, operational sex ratio, and the arena of sexual selection in Drosophila species. Evolution, 56: 17251734. https://doi.org/10.1111/j.0014-3820.2002.tb00186.x.CrossRefGoogle ScholarPubMed
Markow, T.A. and O’Grady, P. 2008. Reproductive ecology of Drosophila. Functional Ecology, 22: 747759. https://doi.org/10.1111/j.1365-2435.2008.01457.x.CrossRefGoogle ScholarPubMed
Mazzoni, V., Anfora, G., and Virant-Doberlet, M. 2013. Substrate vibrations during courtship in three Drosophila species. Public Library of Science One, 8: e80708. https://doi.org/10.1371/journal.pone.0080708.CrossRefGoogle Scholar
National Research Council. 2000. The future role of pesticides in US agriculture. The National Academy Press, Washington, District of Columbia, United States of America. https://doi.org/10.17226/9598.Google Scholar
Newport, M.E.A. and Gromko, M.H. 1984. The effect of experimental design on female receptivity to remating and its impact on reproductive success in Drosophila melanogaster. Evolution, 38: 12611272. https://doi.org/10.1111/j.1558-5646.1984.tb05648.x.CrossRefGoogle ScholarPubMed
Nikolouli, K., Colinet, H., Renault, D., Enriquez, T., Mouton, L., and Gibert, P., et al. 2018. Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. Journal of Pest Science, 91: 489503. https://doi.org/10.1007/s10340-017-0944-y.CrossRefGoogle ScholarPubMed
Ochando, M.D., Reyes, A., and Ayala, F.J., 1996. Multiple paternity in two natural populations (orchard and vineyard) of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 93: 1176911773. https://doi.org/10.1073/pnas.93.21.11769.CrossRefGoogle ScholarPubMed
Parker, A. and Mehta, K. 2007. Sterile insect technique: a model for dose optimization for improved sterile insect quality. Florida Entomologist, 90: 8895. https://doi.org/10.1653/00154040(2007)90[88:SITAMF]2.0.CO;2.CrossRefGoogle Scholar
Partridge, L. and Farquhar, M. 1983. Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Animal Behaviour, 31: 871877. https://doi.org/10.1016/S0003-3472(83)80242-5.CrossRefGoogle Scholar
Pérez-Staples, D., Shelly, T.E., and Yuval, B. 2013. Female mating failure and the failure of ‘mating’ in sterile insect programs. Entomologia Experimentalis et Applicata, 146: 6678. https://doi.org/10.1111/j.1570-7458.2012.01312.x.CrossRefGoogle Scholar
Price, C.S.C. 1997. Conspecific sperm precedence in Drosophila. Nature, 388: 663666. https://doi.org/10.1038/41753.CrossRefGoogle ScholarPubMed
R Development Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Radhakrishnan, P., Pérez-Staples, D., Weldon, C.W., and Taylor, P.W. 2009. Multiple mating and sperm depletion in male Queensland fruit flies: effects on female remating behaviour. Animal Behaviour, 78: 839846. https://doi.org/10.1016/j.anbehav.2009.07.002.CrossRefGoogle Scholar
Revadi, S., Lebreton, S., Witzgall, P., Anfora, G., Dekker, T., and Becher, P.G. 2015. Sexual Behavior of Drosophila suzukii. Insects, 6: 183196. https://doi.org/10.3390/insects6010183.CrossRefGoogle ScholarPubMed
Robinson, A.S. 2002. Mutations and their use in insect control. Mutation Research/Reviews in Mutation Research, 511: 113132. https://doi.org/10.1016/S1383-5742(02)00006-6.CrossRefGoogle ScholarPubMed
Stacconi, M.V.R., Grassi, A., Ioriatti, C., and Anfora, G. 2019. Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations. BioControl, 64: 919. https://doi.org/10.1007/s10526-018-09914-0.CrossRefGoogle Scholar
Toledo, J., Rull, J., Oropeza, A., Hernández, E., and Liedo, P. 2004. Irradiation of Anastrepha obliqua (Diptera: Tephritidae) revisited: optimizing sterility induction. Journal of Economic Entomology, 97: 383389. https://doi.org/10.1093/jee/97.2.383.CrossRefGoogle ScholarPubMed
Vreysen, M. 2005. Monitoring sterile and wild insects in area-wide integrated pest management programmes. In Sterile insect technique. Edited by V.A. Dyck, J. Hendrichs, and A.S. Robinson. Springer, Dordrecht, The Netherlands. Pp. 325361.Google Scholar
Walsh, D.B., Bolda, M.P., Goodhue, R.E., Dreves, A.J., Lee, J., Bruck, D.J., et al. 2011. Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. Journal of Integrated Pest Management, 2: G1G7. https://doi.org/10.1603/IPM10010.CrossRefGoogle Scholar