Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:02:08.689Z Has data issue: false hasContentIssue false

Effect of small-scale forest management on fungivorous Coleoptera in old-growth forest fragments in southeastern Ontario, Canada

Published online by Cambridge University Press:  02 April 2012

Rebecca M. Zeran
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Robert S. Anderson
Affiliation:
Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada K1P 6P4
Terry A. Wheeler*
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
*
1Corresponding author (e-mail: terry.wheeler@mcgill.ca).

Abstract

Fungivorous Coleoptera were sampled from old-growth and managed (selectively logged in 1999) hemlock–hardwood forests in southeastern Ontario to examine the effect of small-scale forest management on fungivore diversity in forest fragments. Sampling using flight-intercept traps and trunk-window traps for 22 weeks in 2003 yielded 11 888 beetles representing 73 species in 11 target families (Anthribidae, Cerylonidae, Endomychidae, Erotylidae, Leiodidae, Mycetophagidae, Scaphidiidae, Sphindidae, Tenebrionidae, Trogossitidae, and Zopheridae). The leiodid subfamily Leiodinae was the dominant taxon (10 386 individuals, 38 species). While old-growth stands had no recent logging and had higher volumes of coarse woody debris, species diversity and composition of fungivorous Coleoptera were similar between forest types, suggesting that the stand differences measured (recent logging history, volume of coarse woody debris) did not have a significant effect on beetle diversity in this study. Indicator species analysis showed that Triplax macra LeConte (Erotylidae) was strongly associated with old-growth stands, while Anisotoma blanchardi (Horn), Anogdus obsoletus (Melsheimer), Agathidium sp. 1 (Leiodidae), and Mycetina perpulchra (Newman) (Endomychidae) were associated with managed stands. The lack of difference observed between stand types may be related to the small size of the forest fragments or the relatively small scale of the disturbance.

Résumé

Nous avons échantillonné les coléoptères mycophages dans des forêts anciennes et aménagées (coupe sélective en 1999) de pruches et de bois durs dans le sud-est de l'Ontario afin d'étudier les effets des aménagements à petite échelle sur la diversité des mycophages dans les fragments forestiers. Un échantillonnage de 22 semaines en 2003 à l'aide de pièges d'interception de vol et de pièges-fenêtres sur les troncs a fourni 11 888 spécimens représentant 73 espèces dans les 11 familles ciblées (Anthribidae, Cerylonidae, Endomychidae, Erotylidae, Leiodidae, Mycetophagidae, Scaphidiidae, Sphindidae, Tenebrionidae, Trogossitidae et Zopheridae). La sous-famille Leiodinae des Leiodidae est le taxon dominant (10 386 individus, 38 espèces). Bien que les parcelles anciennes n'aient pas subi de coupe récente et qu'elles contiennent des volumes plus importants de débris ligneux grossiers, la diversité et la composition spécifiques des coléoptères mycophages sont semblables dans les deux types de forêts, ce qui laisse croire que les différences mesurées dans notre étude entre les parcelles (chronologie des coupes récentes, volume de débris ligneux grossiers) n'ont pas d'effet significatif sur la diversité des coléoptères. Une analyse des espèces indicatrices montre que Triplax macra LeConte (Erotylidae) est fortement associé aux parcelles anciennes, alors qu'Anisotoma blanchardi (Horn), Anogdus obsoletus (Melsheimer), Agathidium sp. 1 (Leiodidae) et Mycetina perpulchra (Newman) (Endomychidae) le sont avec les parcelles aménagées. L'absence de différences observée entre les types de parcelles peut peut-être s'expliquer par la taille restreinte des fragments forestiers ou par l'échelle relativement petite de la perturbation.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnett, R.H. Jr., and Thomas, M.C. (Editors). 2001. American beetles. Vol. 1. CRC Press, Boca Raton, Florida.Google Scholar
Arnett, R.H. Jr., Thomas, M.C., Skelley, P.E., and Frank, J.H. (Editors). 2002. American beetles. Vol. 2. CRC Press, Boca Raton, Florida.Google Scholar
Bader, P., Jansson, S., and Jonsson, B.G. 1995. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biological Conservation, 72: 355362.CrossRefGoogle Scholar
Baranowski, R. 1993. Revision of the genus Leiodes Latreille of North and Central America (Coleoptera: Leiodidae). Entomologica Scandinavica Supplement, 42: 1149.Google Scholar
Blackwell, M. 1984. Myxomycetes and their arthropod associates. In Fungus–insect relationships. Edited by Wheeler, Q. and Blackwell, M.. Columbia University Press, New York. pp. 6790.Google Scholar
Buddle, C.M., Beguin, J., Bolduc, E., Mercado, A., Sackett, T.E., Selby, R.D., Varady-Szabo, H., and Zeran, R.M. 2005. The importance and use of taxon sampling curves for comparative biodiversity research with forest arthropod assemblages. The Canadian Entomologist, 137: 120127.CrossRefGoogle Scholar
Cannon, P.F. 1997. Strategies for rapid assessment of fungal diversity. Biodiversity and Conservation, 6: 669680.CrossRefGoogle Scholar
Chandler, D.S., and Peck, S.B. 1992. Diversity and seasonality of leiodid beetles (Coleoptera: Leiodidae) in an old-growth and a 40-year-old forest in New Hampshire. Environmental Entomology, 21: 12831293.CrossRefGoogle Scholar
Colwell, R.K. 2001. EstimateS: statistical estimation of species richness and shared species from samples. Version 6.0b1 beta [computer program]. User's guide and application available from http://viceroy.eeb.uconn.edu/estimates.Google Scholar
Downie, N.M., and Arnett, R.H. 1996. The beetles of northeastern North America. Vols. I and II. The Sandhill Crane Press, Gainesville, Florida.Google Scholar
Dufrêne, M., and Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345366.Google Scholar
Goodburn, J.M., and Lorimer, C.G. 1998. Cavity trees and coarse woody debris in old growth and managed northern hardwoods in Wisconsin and Michigan. Canadian Journal of Forest Research, 28: 427438.Google Scholar
Goodrich, M.A., and Skelley, P.E. 1993. The pleasing fungus beetles of Illinois (Coleoptera: Erotylidae). Part II. Triplacinae. Triplax and Ischyrus. Transactions of the Illinois State Academy of Science, 86: 153171.Google Scholar
Gotelli, N.J., and Entsminger, G.L. 2001. EcoSim: null models software for ecology. Version 7.0 [computer program]. Acquired Intelligence Inc. and Kesey-Bear, Jericho, Vermont. Available from http://homepages.together.net/~gentsmin/ecosim.htm.Google Scholar
Grove, S.J. 2002. Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics, 33: 123.CrossRefGoogle Scholar
Hammond, H.E.J. 1997. Arthropod biodiversity from Populus coarse woody material in north-central Alberta: a review of taxa and collection methods. The Canadian Entomologist, 129: 10091033.CrossRefGoogle Scholar
Hammond, H.E.J., Langor, D.W., and Spence, J.R. 2001. Early colonization of Populus wood by saproxylic beetles (Coleoptera). Canadian Journal of Forest Research, 31: 11751183.CrossRefGoogle Scholar
Hammond, H.E.J., Langor, D.W., and Spence, J.R. 2004. Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: spatiotemporal variation and conservation of assemblages. Canadian Journal of Forest Research, 34: 119.CrossRefGoogle Scholar
Jokimaki, J., Huhta, E., Itamies, J., and Rahko, P. 1998. Distribution of arthropods in relation to forest patch size, edge, and stand characteristics. Canadian Journal of Forest Research, 28: 10681072.CrossRefGoogle Scholar
Jonsell, M., Weslien, J., and Ehnström, B. 1998. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodiversity and Conservation, 7: 749764.CrossRefGoogle Scholar
Kaila, L., Martikainen, P., and Punttila, P. 1997. Dead trees left in clear-cuts benefit saproxylic Coleoptera adapted to natural disturbances in boreal forest. Biodiversity and Conservation, 6: 118.CrossRefGoogle Scholar
Komonen, A. 2003. Hotspots of insect diversity in boreal forests. Conservation Biology, 17: 976981.CrossRefGoogle Scholar
Krug, J.C., Setliff, E.C., and Dmytrasz, P. 2004. Inonotus dryadeus in North America: new records, hosts, distribution and incidence. Forest Pathology, 34: 285291.CrossRefGoogle Scholar
Lawrence, J.F., and Newton, A.F. Jr., 1980. Coleoptera associated with the fruiting bodies of slime molds (Myxomycetes). The Coleopterist's Bulletin, 34: 129143.Google Scholar
Magurran, A. 2004. Measuring biological diversity. Blackwell Publishing, Malden, Massachusetts.Google Scholar
Martikainen, P., Siitonen, J., Kaila, L., Punttila, P., and Rauh, J. 1999. Bark beetles (Coleoptera, Scolytidae) and associated beetle species in mature managed and old-growth boreal forests in southern Finland. Forest Ecology and Management, 116: 233245.CrossRefGoogle Scholar
Martikainen, P., Siitonen, J., Punttila, P., Kaila, L., and Rauh, J. 2000. Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biological Conservation, 94: 199209.Google Scholar
McCune, B., and Mefford, M.J. 1999. PC-ORD. Multivariate analysis of ecological data, version 4 [computer program]. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
McCune, B., Grace, J.B., and Urban, D.L. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
Murcia, C. 1995. Edge effects in fragmented forests: implications for conservation. Trends in Ecology and Evolution, 10: 5862.CrossRefGoogle ScholarPubMed
Newton, A.F. Jr., 1984. Mycophagy in Staphylinoidea (Coleoptera). In Fungus–insect relationships. Edited by Wheeler, Q. and Blackwell, M.. Columbia University Press, New York. pp. 302353.Google Scholar
Niemelä, J. 1997. Invertebrates and boreal forest management. Conservation Biology, 11: 601610.CrossRefGoogle Scholar
Niemelä, J., Langor, D., and Spence, J.R. 1993. Effects of clear-cut harvesting on boreal ground-beetle assemblages (Coleoptera: Carabidae) in Western Canada. Conservation Biology, 7: 551561.CrossRefGoogle Scholar
Økland, B., Bakke, A., Hågvar, S., and Kvamme, T. 1996. What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodiversity and Conservation, 5: 75100.CrossRefGoogle Scholar
Schiegg, K. 2000. Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography, 23: 579587.CrossRefGoogle Scholar
Siitonen, J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. In Ecology of woody debris in boreal forests. Ecological Bulletin 49. Edited by Jonsson, B.G. and Kruys, N.. Blackwell Publishing, Oxford. pp. 1141.Google Scholar
Siitonen, J., and Martikainen, P. 1994. Occurrence of rare and threatened insects living on decaying Populus tremula: a comparison between Finnish and Russian Karelia. Scandinavian Journal of Forest Research, 9: 185191.CrossRefGoogle Scholar
Siitonen, J., Martikainen, P., Puntilla, P., and Rauh, J. 2000. Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. Forest Ecology and Management, 128: 211225.CrossRefGoogle Scholar
Similä, M., Kouki, J., and Martikainen, P. 2003. Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. Forest Ecology and Management, 174: 365381.CrossRefGoogle Scholar
Skelley, P.E., Goodrich, M.A., and Leschen, R.A.B. 1991. Fungal host records for Erotylidae (Coleoptera: Cucujoidea) of America north of Mexico. Entomological News, 102: 5772.Google Scholar
Speight, M.C.D. 1989. Saproxylic invertebrates and their conservation. Council of Europe, Strasbourg.Google Scholar
Spence, J.R., Langor, D.W., Hammond, H.E.J., and Pohl, G.R. 1997. Beetle abundance and diversity in a boreal mixed-wood forest. In Forests and insects. Edited by Watt, A.D., Stork, N.E., and Hunter, M.D.. Chapman and Hall, London. pp. 287301.Google Scholar
Stephenson, S.L. 1988. Distribution and ecology of Myxomycetes in temperate forests. I. Patterns of occurrence in the upland forests of southwestern Virginia. Canadian Journal of Botany, 66: 21872207.CrossRefGoogle Scholar
Suffling, R., Evans, M., and Perara, A. 2003. Presettlement forest in southern Ontario: ecosystems measured through a cultural prism. The Forestry Chronicle, 79: 485501.CrossRefGoogle Scholar
Thunes, K.H., Midtgaard, F., and Gjerde, I. 2000. Diversity of Coleoptera of the bracket fungus Fomitopsis pinicola in a Norwegian spruce forest. Biodiversity and Conservation, 9: 833852.CrossRefGoogle Scholar
Väisänen, R., Biström, O., and Heliövaara, K. 1993. Sub-cortical Coleoptera in dead pines and spruces: is primeval species composition maintained in managed forests? Biodiversity and Conservation, 2: 95113.CrossRefGoogle Scholar
Werner, S.M., and Raffa, K.F. 2000. Effects of forest management practices on the diversity of ground-occurring beetles in mixed northern hardwood forests of the Great Lakes Region. Forest Ecology and Management, 139: 135155.CrossRefGoogle Scholar
Wheeler, Q. 1984. Evolution of slime mold feeding in leiodid beetles. In Fungus–insect relationships. Edited by Wheeler, Q. and Blackwell, M.. Columbia University Press, New York. pp. 446477.Google Scholar
Zeran, R.M., Anderson, R.S., and Wheeler, T.A. 2006. Sap beetles (Coleoptera: Nitidulidae) in managed and old-growth forests in southeastern Ontario, Canada. The Canadian Entomologist, 138: 123137.CrossRefGoogle Scholar