Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T02:18:18.406Z Has data issue: false hasContentIssue false

EFFECTIVENESS OF MALAISE TRAPS IN COLLECTING HYMENOPTERA: THE INFLUENCE OF TRAP DESIGN, MESH SIZE, AND LOCATION

Published online by Cambridge University Press:  31 May 2012

D. Christopher Darling
Affiliation:
Department of Entomology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6 and Department of Zoology, University of Toronto, Toronto, Ontario, Canada M5S 1A1
Laurence Packer
Affiliation:
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The influence of various aspects of Malaise trap design on efficiency in collecting various groups of Hymenoptera was compared using commercially available traps. The influence of fine and coarse mesh sizes and the importance of the incorporation of pan traps into the design were evaluated in two sampling periods in an old dune community at Pinery Provincial Park in southern Ontario. Numbers of individuals collected in Malaise trap heads and pan traps were presented for each paired comparison of mesh size (fine and coarse) and location (top and bottom of a hill) for various families of Hymenoptera. A graphical analysis of the normalized catch data for more inclusive groupings, viz. Symphyta, Aculeata, Ichneumonoidea, and microhymenoptera, was presented. The major results of these comparisons were as follows: (1) pan traps were an important component of efficient Malaise traps, especially for Aculeata and microhymenoptera; (2) coarse mesh was more effective in collecting Aculeata; (3) coarse and fine mesh were both effective in collecting Ichneumonoidea; and (4) fine mesh was more effective in collecting microhymenoptera. There was an interaction effect between the type of trap used and groups collected and it was not possible to maximize simultaneously the collection of all groups of Hymenoptera. The use of various mesh types and a trap design that incorporates pan traps was recommended.

Résumé

On a comparé l’influence de certaines caractéristiques du désign de pièges Malaise pour leur efficacité à collecter divers groupes d’Hyménoptères, en utilisant des modèles disponibles sur le marché. L’influence de la grandeur des mailles et l’importance de l’inclusion de bacs de piégeage ont été évalués lors de deux périodes d’échantillonnage dans une communauté avancée du type dune au Pinery Provincial Park, en Ontario. Les nombres d’individus collectés dans le haut des pièges Malaise et les bacs sont donnés pour chaque grandeur de mailles testée (fines, grosses), et chaque site de piégeage (bas et haut d’une colline), et ce pour diverses familles d’Hyménoptères. On présente une analyse graphique des données de capture normalisées pour des groupes plus inclusifs, soit les Symphyta, Aculeata. Ichneumonoidea et microhymenoptères. Les résultats de ces comparaisons se résument comme suit; (1) les bacs se sont avérés un élément important des pièges Malaise efficaces, particulièrement pour les Aculeata et les microhyménoptères; (2) les grandes mailles sont plus efficaces pour les Aculeata; (3) les mailles fines ou grandes sont également efficaces pour les Ichneumonoidea; (4) les mailles fines sont plus efficaces pour les microhyménoptères. On a note un effet interactif entre le type de piège utilisé et les groupes collectés, et il semble impossible de maximiser simultanément la collection des tous les groupes d’Hymenoptera. On recommande l’utilisation des divers types de mailles et un désign de piège qui comprend des bacs.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

References

Evans, F.C., and Owen, D.F.. 1965. Measuring insect flight activity with a Malaise trap. Papers of the Michigan Academy of Science, Arts, and Letters, Vol. L: 8994.Google Scholar
Hollingsworth, J.P., Hartstack, A.W.T., and Lingren, P.D.. 1970. The spectral response of Campoletis perdistinctus. J. econ. Ent. 63: 17581761.CrossRefGoogle Scholar
Kennedy, J.S., Booth, C.O., and Kershaw, W.J.S.. 1961. Host finding by aphids in the field. III. Visual attraction. Ann. Appl. Biol. 49: 124.CrossRefGoogle Scholar
Lewin, R. 1986. A mass extinction without asteroids. Science 234: 1415.CrossRefGoogle ScholarPubMed
Masner, L., and Goulet, H.. 1981. A new model of flight-interception trap for some hymenopterous insects. Ent. News 92: 199202.Google Scholar
Matthews, R.W., and Matthews, J.R.. 1983. Malaise traps: the Townes model catches more insects. Contrib. Am. ent. Inst. 20: 428432.Google Scholar
Orlóci, L. 1978. Multivariate Analysis in Vegetation Research, 2nd ed. Dr. W. Junk B. V., Boston. 451 pp.Google Scholar
Owen, D.F. 1983. A hole in a tent or how to explore insect abundance and diversity. Contrib. Am. ent. Soc. 20: 3347.Google Scholar
Peck, S.B., and Davies, A.E.. 1980. Collecting small beetles with large-area “window” traps. Coleopt. Bull. 34: 237239.Google Scholar
Southwood, T.R.E. 1978. Ecological Methods with Particular Reference to the Study of Insect Populations, 2nd ed. Chapman and Hall, London. 524 pp.Google Scholar
Steyskal, G.C. 1981. A bibliography of the Malaise trap. Proc. ent. Soc. Wash. 83: 225229.Google Scholar
Townes, H. 1962. Design for a Malaise trap. Proc. ent. Soc. Wash. 64: 253262.Google Scholar
Townes, H. 1972. A light-weight Malaise trap. Ent. News 83: 239247.Google Scholar