Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T17:54:35.364Z Has data issue: false hasContentIssue false

EFFET DU RAYONNEMENT LUMINEUX ET DE LA VITESSE DE L’AIR AMBIANT SUR LA TEMPÉRATURE CORPORELLE DES LARVES ET DES ADULTES DU DORYPHORE DE LA POMME DE TERRE

Published online by Cambridge University Press:  31 May 2012

Yvan Pelletier*
Affiliation:
Centre de recherches Agriculture et Agroalimentaire Canada, B. P. 20 280, Fredericton, NB E3B 427, Canada
Gilles Bélanger
Affiliation:
Centre de recherches Agriculture et Agroalimentaire Canada, B. P. 20 280, Fredericton, NB E3B 427, Canada
*
1Auteur correspondant (tél. : (506) 452-3206; téléc. : (506) 452-3316; counier électronique : pelletiery@em.agr.ca).

Abstract

The effect of light intensity and wind speed on the body temperature of larvae and adults of the Colorado potato beetle (Leptinotarsa decemlineata (Say)) was studied in the laboratory. At a light intensity of 0.95 kW m−2 and without wind, the body temperature of larvae and adults was respectively 9.3 and 18.2 °C higher than air temperature. The temperature difference between the body temperature of larvae and adults and the air temperature increased linearly with an increase in light intensity. Wind speed had an important effect on the rate of increase of the body temperature as a function of light intensity in both larvae and adults. Our results demonstrated that the energy balance of larvae and adults differs.

Résumé

L’effet de l’intensité du rayonnement lumineux et de la vitesse de l’air ambiant sur l’accroissement de température corporelle de la larve et de l’adulte du doryphore de la pomme de terre (Leptinotarsa decemlineata (Say)) a été évalué en laboratoire. La température corporelle des larves et des adultes était respectivement de 9,3 et 18,2 °C plus élevée que la température de l’air, sous des conditions sans vent et à un niveau de rayonnement lumineux de 0,95 kW m−2. La différence entre la température corporelle des adultes et des larves et celle de l’air augmentait linéairement avec une augmentation de l’intensité lumineuse. La vitesse de l’air ambiant avait un effet important sur le taux d’accroissement de la température corporelle en fonction de l’intensité lumineuse chez les deux stades du doryphore de la pomme de terre. Les résultats obtenus démontrent que les échanges énergétiques des larves et des adultes diffèrent sous plusieurs aspects.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Anderson, R.V., C.R. Tracy, et Abramsky, Z.. 1979. Habitat selection in two species of short homed grasshoppers: The role of thermal and hydric stresses. Oecologia (Heidelberg) 38: 359374.CrossRefGoogle Scholar
Casey, T.M. 1981. Behavioral mechanisms of thermoregulation. pp. 80114in Heinrich, B. (éd.), Insect Thermoregulation. John Wiley & Sons, New York.Google Scholar
Edney, E.B. 1971. The body temperature of tenebrionid beetles in the Namib desert of Southern Africa. Experimental Biology (Berlin) 55: 253272.CrossRefGoogle Scholar
Genstat 5 Committee. 1987. Genstat 5 Reference Manual. Oxford University Press, New York, NY.Google Scholar
Hadley, N.F. 1970. Micrometeorology and energy exchange in two desert arthropods. Ecology 51: 434444.Google Scholar
Heinrich, B. 1993. The Hot-Blooded Insects. Harvard University Press, Cambridge, Massachussetts. 601 pp.Google Scholar
Henwood, K. 1975. A field-tested thermoregulation model for two diurnal Namib desert tenebrionid beetles. Ecology 56: 13291342.Google Scholar
Kevan, P.G., Jensen, T.S. et Shorthouse, J.D.. 1983. Body temperatures and behavioral thermoregulation of high arctic woolly-bear caterpillars and pupae (Gynaephora rossii, Lymantriidae: Lepidoptera) and the importance of sunshine. Arctic and Alpine Research 14: 125136.Google Scholar
Lactin, D.J., et Holliday, N.J.. 1994. Behavioral responses of Colorado potato beetle larvae to combinations of temperature and insolation, under field conditions. Entomologia Experimentalis et Applicata 72: 255263.CrossRefGoogle Scholar
May, M.L. 1981. Role of body temperature and thermoregulation in the biology of the Colorado potato beetle. pp. 86104in Lashomb, J.H., et Casagrande, R. (éd.), Advances in Potato Pest Management. Hutchinson Ross Publishing Company, Stroudsburg, Pennsylvania.Google Scholar
May, M.L. 1985. Thermoregulation. pp. 507552in Kerkut, G.A., et Gilbert, L.I. (éd.), Comprehensive Insect Physiology, Biochemistry, and Pharmacology. Vol. 4: Regulation: Digestion, Nutrition, Excretion. Pergamon Press, Oxford.Google Scholar
Pelletier, Y. 1995. Effects of temperature and relative humidity on water loss by the Colorado potato beetle, Leptinotarsa decemlineata (Say). Journal of Insect Physiology 41: 235239.Google Scholar
Plot-IT. 1991. User's Guide. Version 2.0. Scientific Programming Enterprises. Haslett, Michigan.Google Scholar
Smith, W.K., et Miller, P.C.. 1973. The thermal ecology of two south Florida fiddler crabs: Uca rapax and U. pugilator Bosc. Physiological Zoology 46: 186207.CrossRefGoogle Scholar
Stower, W.J., et Griffiths, J.F.. 1966. The body temperature of the desert locust (Schistocerca gregaria). Entomologia Experimentalis et Applicata 9: 127178.Google Scholar