Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T06:22:58.837Z Has data issue: false hasContentIssue false

The elements of seasonal adaptations in insects

Published online by Cambridge University Press:  02 April 2012

H.V. Danks
Affiliation:
Biological Survey of Canada (Terrestrial Arthropods), Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada K1P 6P4 (e-mail: hdanks@mus-nature.ca)

Abstract

The many components of seasonal adaptations in insects are reviewed, especially from the viewpoint of aspects that must be studied in order to understand the structure and purposes of the adaptations. Component responses include dispersal, habitat selection, habitat modification, resistance to cold, dryness, and food limitation, trade-offs, diapause, modifications of developmental rate, sensitivity to environmental signals, life-cycle patterns including multiple alternatives in one species, and types of variation in phenology and development. Spatial, temporal, and resource elements of the environment are also reviewed, as are environmental signals, supporting the conclusion that further understanding of all of these seasonal responses requires detailed simultaneous study of the natural environments that drive the patterns of response.

Résumé

On trouvera ici une revue des multiples composantes des adaptations saisonnières des insectes, particulièrement des aspects à examiner afin de comprendre la structure et les buts de ces adaptations. Ces composantes incluent la dispersion, la sélection d'habitat, la modification d'habitat, la résistance au froid, à la sécheresse et aux restrictions de nourriture, les compromis, la diapause, les modifications du taux de développement, la sensibilité aux signaux environnementaux, les patrons de cycles biologiques (y compris les patrons multiples possibles chez une même espèce), ainsi que les types de variation dans la phénologie et le développement. La revue considère aussi les conditions d'espace, de temps et de ressources dans le milieu de même que les signaux environnementaux. En conclusion, la compréhension accrue de ces réponses saisonnières requiert une étude détaillée et simultanée des environnements naturels qui régissent les patrons de réponses.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alarie, Y. 1998. Cuticular hydrocarbon analysis of the aquatic beetle Agabus anthracinus Mannerheim (Coleoptera: Dytiscidae). The Canadian Entomologist, 130: 615629.CrossRefGoogle Scholar
Alpatov, A.M., Zotov, V.A., Tshernyshev, W.B., and Rietveld, W.J. 1999. Endogenous circadian rhythm is a crucial tool for survival of the sand-desert tenebrionid beetle Trigonoscelis gigas Reitter. Biological Rhythm Research, 30: 104109.CrossRefGoogle Scholar
Anderson, J.F. 1974. Responses to starvation in the spiders Lycosa lenta Hentz and Filistata hibernalis Hentz. Ecology, 55: 576585.CrossRefGoogle Scholar
Aquino, A.L., and Turk, S.Z. 1997. Ciclo vital de Leptysma argentina Bruner 1906 (Acrididae: Leptysminae: Leptysmini). Variabilidad en el esquema reproductivo y reproducción. Acta Entomologica Chilena, 21: 9399.Google Scholar
Archer, M.A., Phelan, J.P., Beckman, K.A., and Rose, M.R. 2003. Breakdown in correlations during laboratory evolution. II. Selection on stress resistance in Drosophila populations. Evolution, 57: 536543.Google ScholarPubMed
Armbruster, P., Bradshaw, W.E., and Holzapfel, C.M. 1998. Effects of postglacial range expansion on allozyme and quantitative genetic variation of the pitcher-plant mosquito, Wyeomyia smithii. Evolution, 52: 16971704.Google ScholarPubMed
Bailey, W.G., Oke, T.R., and Rouse, W.R. (Editors). 1997. The surface climates of Canada. McGill–Queen's University Press, Montréal, Quebec.Google Scholar
Baker, R.L. 1980. Some problems in using meteorological data to forecast the timing of insect life cycles. EPPO Bulletin, 10: 8392.CrossRefGoogle Scholar
Bale, J.S. 2002. Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London B Biological Sciences, 357: 849862.CrossRefGoogle ScholarPubMed
Bale, J.S., Block, W., and Worland, M.R. 2000. Thermal tolerance and acclimation response of larvae of the sub-Antarctic beetle Hydromedion sparsutum (Coleoptera: Perimylopidae). Polar Biology, 23: 7784.CrossRefGoogle Scholar
Bale, J.S., Worland, M.R., and Block, W. 2001. Effects of summer frost exposures on the cold tolerance strategy of a sub-Antarctic beetle. Journal of Insect Physiology, 47: 11611167.CrossRefGoogle ScholarPubMed
Baust, J.G., and Nishino, M. 1991. Freezing tolerance in the goldenrod gall fly (Eurosta solidaginis). In Insects at low temperature. Edited by Lee, R.E. Jr., and Denlinger, D.L.. Chapman and Hall, New York. pp. 260275.CrossRefGoogle Scholar
Bayley, M., and Holmstrup, M. 1999. Water vapor absorption in arthropods by accumulation of myoinositol and glucose. Science (Washington, D.C.), 285: 19091911.CrossRefGoogle ScholarPubMed
Benbow, M.E., Burky, A.J., and Way, C.M. 2003. Life cycle of a torrenticolous Hawaiian chironomid (Telmatogeton torrenticola): stream flow and microhabitat effects. Annales de Limnologie, 39: 103114.CrossRefGoogle Scholar
Bennett, V.A., Pruitt, N.L., and Lee, R.E. Jr., 1997. Seasonal changes in fatty acid composition associated with cold-hardening in third instar larvae of Eurosta solidaginis. Journal of Comparative Physiology B Biochemical, Systemic and Environmental Physiology, 167: 249255.CrossRefGoogle Scholar
Bennett, V.A., Kukal, O., and Lee, R.E. Jr., 1999. Metabolic opportunists: feeding and temperature influence the rate and pattern of respiration in the high arctic woollybear caterpillar Gynaephora groenlandica (Lymantriidae). Journal of Experimental Biology, 202: 4753.CrossRefGoogle ScholarPubMed
Bennett, V.A., Lee, R.E., and Kukal, O. 2001. Abiotic and biotic factors affecting water loss rates in the polar desert caterpillar Gynaephora groenlandica (Lepidoptera: Lymantriidae) and the temperate caterpillar, Pyrrharctia isabella (Lepidoptera: Arctiidae). American Zoologist, 41: 13881389.Google Scholar
Bennett, V.A., Sformo, T., Walters, K., Toien, O., Jeannet, K., Hochstrasser, R., Pan, Q., Serianni, A.S., Barnes, B.M., and Duman, J.G. 2005. Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): roles of antifreeze proteins, polyols, dehydration and diapause. Journal of Experimental Biology, 208: 44674477.CrossRefGoogle ScholarPubMed
Benoit, J.B., Yoder, J.A., Rellinger, E.J., Ark, J.T., and Keeney, G.D. 2005. Prolonged maintenance of water balance by adult females of the American spider beetle, Mezium affine Boieldieu, in the absence of food and water resources. Journal of Insect Physiology, 51: 565573.CrossRefGoogle ScholarPubMed
Benton, A.H., and Crump, A.J. 1979. Observations on aggregation and overwintering in the coccinellid beetle Coleomegilla maculata (DeGeer). Journal of the New York Entomological Society, 87: 154159.Google Scholar
Benton, T.G., Plaistow, S.J., Beckerman, A.P., Lapsley, C.T., and Littlejohns, S. 2005. Changes in maternal investment in eggs can affect population dynamics. Proceedings of the Royal Society of London Series B Biological Sciences, 272: 13511356.Google ScholarPubMed
Birkemoe, T., and Leinaas, H.P. 1999. Reproductive biology of the arctic collembolan Hypogastrura tullbergi. Ecography, 22: 3139.CrossRefGoogle Scholar
Bjerke, R., and Zachariassen, K.E. 1997. Effects of dehydration on water content, metabolism, and body fluid solutes of a carabid beetle from dry Savanna in East Africa. Comparative Biochemistry and Physiology A, 118: 779787.CrossRefGoogle Scholar
Blanckenhorn, W.U., and Demont, M. 2004. Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integrative and Comparative Biology, 44: 413424.CrossRefGoogle ScholarPubMed
Block, W. 2002. Interactions of water, ice nucleators and desiccation in invertebrate cold survival. European Journal of Entomology, 99: 259266.CrossRefGoogle Scholar
Block, W., and Zettel, J. 2003. Activity and dormancy in relation to body water and cold tolerance in a winter-active springtail (Collembola). European Journal of Entomology, 100: 305312.CrossRefGoogle Scholar
Böcher, J., and Nachman, G. 2001. Temperature and humidity responses of the arctic-alpine seed bug Nysius groenlandicus. Entomologia Experimentalis et Applicata, 99: 319330.CrossRefGoogle Scholar
Bossart, J.L. 1998. Genetic architecture of host use in a widely distributed, polyphagous butterfly (Lepidoptera: Papilionidae): adaptive inferences based on comparison of spatio-temporal populations. Biological Journal of the Linnean Society, 65: 279300.CrossRefGoogle Scholar
Bradford, M.J., and Roff, D.A. 1997. An empirical model of diapause strategies of the cricket Allone-mobius socius. Ecology, 78: 442451.CrossRefGoogle Scholar
Bradshaw, W.E. 1973. Homeostasis and polymorphism in vernal development of Chaoborus americanus. Ecology, 54: 12471259.CrossRefGoogle Scholar
Bradshaw, W.E., Armbruster, P.A., and Holzapfel, C.M. 1998. Fitness consequences of hibernal diapause in the pitcher-plant mosquito, Wyeomyia smithii. Ecology, 79: 14581462.CrossRefGoogle Scholar
Briers, R.A., Gee, J.H.R., and Geoghegan, R. 2004. Effects of the North Atlantic Oscillation on growth and phenology of stream insects. Ecography, 27: 811817.CrossRefGoogle Scholar
Brower, L.P. 1995. Understanding and misunderstanding the migration of the Monarch butterfly (Nymphalidae) in North America: 1857–1995. Journal of the Lepidopterists' Society, 49: 304385.Google Scholar
Brower, L.P. 1996. Monarch butterfly orientation: missing pieces of a magnificent puzzle. Journal of Experimental Biology, 199: 93103.CrossRefGoogle ScholarPubMed
Brower, L.P., Castilleja, G., Peralta, A., Lopez-Garcia, J., Bojorquez-Tapia, L., Diaz, S., Melgarejo, D., and Missrie, M. 2002. Quantitative changes in forest quality in a principal overwintering area of the monarch butterfly in Mexico, 1971–1999. Conservation Biology, 16: 346359.CrossRefGoogle Scholar
Brown, C.L., Bale, J.S., and Walters, K.F.A. 2004. Freezing induces a loss of freeze tolerance in an overwintering insect. Proceedings of the Royal Society of London Series B Biological Sciences, 271: 15071511.CrossRefGoogle Scholar
Burke, S., Pullin, A.S., Wilson, R.J., and Thomas, C.D. 2005. Selection for discontinuous life-history traits along a continuous thermal gradient in the butterfly Aricia agestis. Ecological Entomology, 30: 613619.CrossRefGoogle Scholar
Butler, M.G. 1982. A 7-year life cycle for two Chironomus species in arctic Alaskan tundra ponds (Diptera: Chironomidae). Canadian Journal of Zoology, 60: 5870.CrossRefGoogle Scholar
Byrne, M.J., and Duncan, F.D. 2003. The role of the subelytral spiracles in respiration in the flightless dung beetle Circellium bacchus. Journal of Experimental Biology, 206: 13091318.CrossRefGoogle ScholarPubMed
Carrillo, M.A., Cannon, C.A., Wilcke, W.F., Morey, R.V., Kaliyan, N., and Hutchison, W.D. 2005. Relationship between supercooling point and mortality at low temperatures in indianmeal moth (Lepidoptera: Pyralidae). Journal of Economic Entomology, 98: 618625.CrossRefGoogle Scholar
Chen, B., Kayukawa, T., Monteiro, A., and Ishikawa, Y. 2005. The expression of the HSP90 gene in response to winter and summer diapauses and thermal-stress in the onion maggot, Delia antiqua. Insect Molecular Biology, 14: 697702.CrossRefGoogle Scholar
Chen, Z., Clancy, K.M., and Kolb, T.E. 2003. Variation in budburst phenology of Douglas-fir related to western spruce budworm (Lepidoptera: Tortricidae) fitness. Journal of Economic Entomology, 96: 377387.CrossRefGoogle ScholarPubMed
Cherrill, A. 2002. Relationships between oviposition date, hatch date, and offspring size in the grass-hopper Chorthippus brunneus. Ecological Entomology, 27: 521528.CrossRefGoogle Scholar
Chippindale, A.K., Gibbs, A.G., Sheik, M., Yee, K.J., Djawdan, M., Bradley, T.J., and Rose, M.R. 1998. Resource acquisition and the evolution of stress resistance in Drosophila melanogaster. Evolution, 52: 13421352.CrossRefGoogle ScholarPubMed
Chown, S.L., and Klok, C.J. 2003 a. Water-balance characteristics respond to changes in body size in subantarctic weevils. Physiological and Biochemical Zoology, 76: 634643.CrossRefGoogle ScholarPubMed
Chown, S.L., and Klok, C.J. 2003 b. Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography, 26: 445455.CrossRefGoogle Scholar
Clifford, H.F., Hamilton, H., and Killins, B.A. 1979. Biology of the mayfly Leptophlebia cupida Say (Ephemeroptera: Leptophlebiidae). Canadian Journal of Zoology, 57: 10261045.CrossRefGoogle Scholar
Cloudsley-Thompson, J.L. 1975. Adaptations of Arthropoda to arid environments. Annual Review of Entomology, 20: 261283.CrossRefGoogle ScholarPubMed
Cloudsley-Thompson, J.L. 1979. Adaptive functions of the colours of desert animals. Journal of Arid Environments, 2: 95104.CrossRefGoogle Scholar
Cloudsley-Thompson, J.L. 1991. Ecophysiology of desert arthropods and reptiles. Springer, Heidelberg.CrossRefGoogle Scholar
Cloudsley-Thompson, J.L. 2001. Thermal and water relations of desert beetles. Naturwissenschaften, 88: 447460.CrossRefGoogle ScholarPubMed
Corbet, P.S. 1964 a. Temporal patterns of emergence in aquatic insects. The Canadian Entomologist, 96: 264279.CrossRefGoogle Scholar
Corbet, P.S. 1964 b. Autogeny and oviposition in arctic mosquitoes. Nature (London), 203: 668.CrossRefGoogle Scholar
Corbet, P.S. 1972. The microclimate of arctic plants and animals, on land and in fresh water. Acta Arctica, 18: 143.Google Scholar
Corbet, P.S., and Danks, H.V. 1973. Seasonal emergence and activity of mosquitoes in a high arctic locality. The Canadian Entomologist, 105: 837872.CrossRefGoogle Scholar
Corbet, P.S., and Danks, H.V. 1975. Egg-laying habits of mosquitoes in the high arctic. Mosquito News, 35: 814.Google Scholar
Corente, C., and Knülle, W. 2003. Trophic determinants of hypopus induction in the stored-product mite Lepidoglyphus destructor (Acari: Astigmata). Experimental and Applied Acarology, 29: 89107.CrossRefGoogle ScholarPubMed
Corley, J.C., and Capurro, A.F. 2000. The persistence of simple host–parasitoid systems with prolonged diapause. Ecologia Austral, 10: 3745.Google Scholar
Cortese, M.D., Norry, F.M., Piccinali, R., and Hasson, E. 2003. Direct and correlated responses to artificial selection on developmental time and wing length in Drosophila buzzatii. Evolution, 56: 25412547.Google Scholar
Costa, G. 1995. Behavioral adaptations of desert animals. Springer, Berlin.CrossRefGoogle Scholar
Court, A. 1974. The climate of the conterminous United States. In Climates of North America. World survey of climatology. Vol. 11. Edited by Bryson, R.A. and Hare, F.K.. Elsevier Scientific Publishing Company, New York. pp. 193343.Google Scholar
Craig, E.A., Gambill, B.D., and Nelson, R.J. 1993. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiological Reviews, 57: 402414.CrossRefGoogle ScholarPubMed
Crans, W.J. 2004. A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States. Journal of Vector Ecology, 29: 110.Google ScholarPubMed
Crawford, C.S. 1981. Biology of desert invertebrates. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Crowe, J.H., Hoekstra, F.A., and Crowe, L.M. 1992. Anhydrobiosis. Annual Review of Physiology, 54: 579599.CrossRefGoogle ScholarPubMed
Danforth, B.N. 1999. Emergence dynamics and bet hedging in a desert bee, Perdita portalis. Proceedings of the Royal Society of London Series B Biological Sciences, 266: 19851994.CrossRefGoogle Scholar
Danks, H.V. 1971 a. Overwintering of some north temperate and arctic Chironomidae. I. The winter environment. The Canadian Entomologist, 103: 589604.CrossRefGoogle Scholar
Danks, H.V. 1971 b. Overwintering of some north temperate and arctic Chironomidae. II. Chironomid biology. The Canadian Entomologist, 103: 18751910.CrossRefGoogle Scholar
Danks, H.V. 1978. Modes of seasonal adaptation in the insects. I. Winter survival. The Canadian Entomologist, 110: 11671205.CrossRefGoogle Scholar
Danks, H.V. 1981. Arctic arthropods. A review of systematics and ecology with particular reference to the North American fauna. Entomological Society of Canada, Ottawa, Ontario.Google Scholar
Danks, H.V. 1983. Extreme individuals in natural populations. Bulletin of the Entomological Society of America, 29: 4146.CrossRefGoogle Scholar
Danks, H.V. 1987 a. Insect dormancy: an ecological perspective. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario [also available from http://www.biology.ualberta.ca/bsc/english/insectdormancy.htm].Google Scholar
Danks, H.V. 1987 b. Insect–plant interactions in arctic regions. Revue d'entomologie du Québec, 31[1996]: 5275.Google Scholar
Danks, H.V. 1990. Arctic insects: instructive diversity. In Canada's missing dimension. Science and history in the Canadian arctic islands. Vol. II. Edited by Harington, C.R.. Canadian Museum of Nature, Ottawa, Ontario. pp. 444470.Google Scholar
Danks, H.V. 1991 a. Life-cycle pathways and the analysis of complex life cycles in insects. The Canadian Entomologist, 123: 2340.CrossRefGoogle Scholar
Danks, H.V. 1991 b. Winter habitats and ecological adaptations for winter survival. In Insects at low temperature. Edited by Lee, R.E. and Denlinger, D.L.. Chapman and Hall, New York. pp. 231259.CrossRefGoogle Scholar
Danks, H.V. 1992. Long life cycles in insects. The Canadian Entomologist, 124: 167187.CrossRefGoogle Scholar
Danks, H.V. 1993. Seasonal adaptations in insects from the high arctic. In Seasonal adaptation and diapause in insects. Edited by Takeda, M. and Tanaka, S.. Bun-ichi-Sogo Publishing, Ltd., Tokyo. pp. 5466. [In Japanese.]Google Scholar
Danks, H.V. 1994. Diversity and integration of life-cycle controls in insects. In Insect life-cycle polymorphism: theory, evolution and ecological consequences for seasonality and diapause control. Edited by Danks, H.V.. Kluwer Academic Publishers, Dordrecht, Germany. pp. 540.CrossRefGoogle Scholar
Danks, H.V. 1996. The wider integration of studies on insect cold-hardiness. European Journal of Entomology, 93: 383403.Google Scholar
Danks, H.V. 1999. Life cycles in polar arthropods — flexible or programmed? European Journal of Entomology, 96: 83102.Google Scholar
Danks, H.V. 2000 a. Dehydration in dormant insects. Journal of Insect Physiology, 46: 837852.CrossRefGoogle ScholarPubMed
Danks, H.V. 2000 b. Insect cold hardiness: a Canadian perspective. CryoLetters, 21: 297308.Google ScholarPubMed
Danks, H.V. 2000 c. Measuring and reporting life-cycle duration in insects and arachnids. European Journal of Entomology, 97: 285303.CrossRefGoogle Scholar
Danks, H.V. 2002 a. Modification of adverse conditions by insects. Oikos, 99: 1024.CrossRefGoogle Scholar
Danks, H.V. 2002 b. The range of insect dormancy responses. European Journal of Entomology, 99: 127142.CrossRefGoogle Scholar
Danks, H.V. 2004 a. Seasonal adaptations in arctic insects. Integrative and Comparative Biology, 44: 8594.CrossRefGoogle ScholarPubMed
Danks, H.V. 2004 b. The roles of insect cocoons in cold conditions. European Journal of Entomology, 101: 433437.CrossRefGoogle Scholar
Danks, H.V. 2005. Key themes in the study of seasonal adaptations in insects. I. Patterns of cold hardiness. Applied Entomology and Zoology, 40: 199211.CrossRefGoogle Scholar
Danks, H.V. 2006 a. Insect adaptations to cold and changing environments. The Canadian Entomologist, 138: 123.CrossRefGoogle Scholar
Danks, H.V. 2006 b. Key themes in the study of seasonal adaptations in insects. II. Life cycle patterns. Applied Entomology and Zoology, 41: 113.CrossRefGoogle Scholar
Danks, H.V. 2006 c. Short life cycles in insects and mites. The Canadian Entomologist, 138: 407463.CrossRefGoogle Scholar
Danks, H.V., and Byers, J.R. 1972. Insects and arachnids of Bathurst Island, Canadian Arctic Archipelago. The Canadian Entomologist, 104: 8188.CrossRefGoogle Scholar
Danks, H.V., and Foottit, R.G. 1989. Insects of the boreal zone of Canada. The Canadian Entomologist, 121: 626677.CrossRefGoogle Scholar
Danks, H.V., and Oliver, D.R. 1972 a. Seasonal emergence of some high arctic Chironomidae (Diptera). The Canadian Entomologist, 104: 661686.CrossRefGoogle Scholar
Danks, H.V., and Oliver, D.R. 1972 b. Diel periodicities of emergence of some high arctic Chironomidae (Diptera). The Canadian Entomologist, 104: 903916.CrossRefGoogle Scholar
Danks, H.V., Kukal, O., and Ring, R.A. 1994. Insect cold-hardiness: insights from the Arctic. Arctic, 47: 391404.CrossRefGoogle Scholar
Dautel, H. 1999. Water loss and metabolic water in starving Argas reflexus nymphs (Acari: Argasidae). Journal of Insect Physiology, 45: 5563.CrossRefGoogle ScholarPubMed
Davidowitz, G., Roff, D.A., and Nijhout, H.F. 2005. A physiological perspective on the response of body size and development time to simultaneous directional selection. Integrative and Comparative Biology, 45: 525531.CrossRefGoogle ScholarPubMed
De Barro, P.J. 1992. The role of temperature, photoperiod, crowding and plant quality on the development of alate viviparous females of the bird cherryoat aphid, Rhopalosiphum padi. Entomologia Experimentalis et Applicata, 65: 205214.CrossRefGoogle Scholar
Denlinger, D.L. 1986. Dormancy in tropical insects. Annual Review of Entomology, 31: 239264.CrossRefGoogle ScholarPubMed
Denlinger, D.L. 1991. Relationship between cold hardiness and diapause. In Insects at low temperature. Edited by Lee, R.E. Jr., and Denlinger, D.L.. Chapman and Hall, New York. pp. 174198.CrossRefGoogle Scholar
Denlinger, D.L., Joplin, K.H., Chen, C.-P., and Lee, R.E. Jr., 1991. Cold shock and heat shock. In Insects at low temperature. Edited by Lee, R.E. Jr., and Denlinger, D.L.. Chapman and Hall, New York. pp. 131148.CrossRefGoogle Scholar
Dennis, R.L.H., Donato, B., Sparks, T.H., and Pollard, E. 2000. Ecological correlates of island incidence and geographical range among British butterflies. Biodiversity and Conservation, 9: 343359.CrossRefGoogle Scholar
Dettinger, M.D., and Diaz, H.F. 2000. Global characteristics of stream flow seasonality and variability. Journal of Hydrometeorology, 1: 289310.2.0.CO;2>CrossRefGoogle Scholar
Dillon, P.M. 1985. Chironomid larval size and case presence influence capture success achieved by dragonfly larvae. Freshwater Invertebrate Biology, 4: 2229.CrossRefGoogle Scholar
Downes, J.A. 1965. Adaptations of insects in the arctic. Annual Review of Entomology, 10: 257274.CrossRefGoogle Scholar
Draney, M.L. 1993. The subelytral cavity of desert tenebrionids. Florida Entomologist, 76: 539547.CrossRefGoogle Scholar
Duman, J.G. 2001. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annual Review of Physiology, 63: 327357.CrossRefGoogle ScholarPubMed
Duman, J.G. 2002. The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate. Journal of Comparative Physiology B Biochemical, Systemic and Environmental Physiology, 172: 163168.Google ScholarPubMed
Duman, J.G., and Serianni, A.S. 2002. The role of endogenous antifreeze protein enhancers in the hemolymph thermal hysteresis activity of the beetle Dendroides canadensis. Journal of Insect Physiology, 48: 103111.CrossRefGoogle ScholarPubMed
Duman, J.G., Bennett, V., Sformo, T., Hochstrasser, R., and Barnes, B.M. 2004. Antifreeze proteins in Alaskan insects and spiders. Journal of Insect Physiology, 50: 259266.CrossRefGoogle ScholarPubMed
Duman, J.G., Xu, L., Neven, L.G., Tursman, D., and Wu, D.W. 1991. Hemolymph proteins involved in insect subzero-temperature tolerance: ice nucleators and antifreeze proteins. In Insects at low temperature. Edited by Lee, R.E. Jr., and Denlinger, D.L.. Chapman and Hall, New York. pp. 94127.CrossRefGoogle Scholar
Edney, E.B. 1977. Water balance in land arthropods. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Fischer, K., Bot, A.N.M., Brakefield, P.M., and Zwaan, B.J. 2006. Do mothers producing large offspring have to sacrifice fecundity? Journal of Evolutionary Biology, 19: 380391.CrossRefGoogle ScholarPubMed
Fleishman, E., Launer, A.E., Weiss, S.B., Reed, J.M., Boggs, C.L., Murphy, D.D., and Ehrlich, P.R. 1997. Effects of microclimate and oviposition timing on prediapause larval survival of the Bay checkerspot butterfly, Euphydryas editha bayensis (Lepidoptera: Nymphalidae). Journal of Research on the Lepidoptera, 36: 3144.CrossRefGoogle Scholar
Foster, W.A. 2000. Coping with the tides: adaptations of insects and arachnids from British saltmarshes. In British saltmarshes. Edited by Sherwood, B.R., Gardiner, B.G., and Harris, T.. Linnean Society, London. pp. 203221.Google Scholar
Fox, C.W., Waddell, K.J., Groeters, F.R., and Mousseau, T.A. 1997. Variation in budbreak phenology affects the distribution of a leafmining beetle (Brachys tessellatus) on turkey oak (Quercus laevis). Ecoscience, 4: 480489.CrossRefGoogle Scholar
Frankino, W.A., and Juliano, S.A. 1999. Costs of reproduction and geographic variation in the reproductive tactics of the mosquito Aedes triseriatus. Oecologia, 120: 5968.CrossRefGoogle ScholarPubMed
Frutiger, A., and Buergisser, G.M. 2002. Life history variability of a grazing stream insect (Liponeura cinerascens minor; Diptera: Blephariceridae). Freshwater Biology, 47: 16181632.CrossRefGoogle Scholar
Garcia, C.M., Garcia-Ruiz, R., Rendón, M., Niell, F.X., and Lucena, J. 1997. Hydrological cycle and interannual variability of the aquatic community in a temporary saline lake (Fuente de Piedra, Southern Spain). Hydrobiologia, 345: 131141.CrossRefGoogle Scholar
Gehrken, U., and Sømme, L. 1987. Increased cold hardiness in eggs of Arcynopteryx compacta (Plecoptera) by dehydration. Journal of Insect Physiology, 33: 987991.CrossRefGoogle Scholar
Genkai-Kato, M., Mitsuhashi, H., Kohmatsu, Y., Miyasaka, H., Nozaki, K., and Nakanishi, M. 2005. A seasonal change in the distribution of a stream-dwelling stonefly nymph reflects oxygen supply and water flow. Ecological Research, 20: 223226.CrossRefGoogle Scholar
Gibbs, A.G., and Johnson, R.A. 2004. The role of discontinuous gas exchange in insects: the chthonic hypothesis does not hold water. Journal of Experimental Biology, 207: 34773482.CrossRefGoogle Scholar
Giberson, D., and Hardwick, M.L. 1999. Pitcher plants (Sarracenia purpurea) in eastern Canadian peatlands: ecology and conservation of the invertebrate inquilines. In Invertebrates in freshwater wetlands of North America: ecology and management. Edited by Batzer, D.P., Rader, R.B., and Wissinger, S.A.. Wiley, New York. pp. 401422.Google Scholar
Giberson, D.J., Bilyj, B., and Burgess, N. 2001. Species diversity and emergence patterns of nematocerous flies (Insecta: Diptera) from three coastal salt marshes in Prince Edward Island, Canada. Estuaries, 24: 862874.CrossRefGoogle Scholar
Graham, L.A., and Davies, P.L. 2005. Glycine-rich antifreeze proteins from snow fleas. Science (Washington, D.C.), 310: 461.CrossRefGoogle ScholarPubMed
Greenslade, P. 1981. Survival of Collembola in arid environments: observations in south Australia and the Sudan. Journal of Arid Environments, 4: 219228.CrossRefGoogle Scholar
Grégoire, J.-C. 1985. Host colonization strategies in Dendroctonus: larval gregariousness vs. mass attack by adults? In The role of the host in the population dynamics of forest insects, Proceedings of the IUFRO Conference, Banff, Alta., 4-7 September 1983. Edited by Safranyik, L.S.. pp. 147154.Google Scholar
Grodhaus, G. 1980. Aestivating chironomid larvae associated with vernal pools. In Chironomidae. Ecology, systematics, cytology and physiology, Proceedings of the 7th International Symposium on Chironomidae, Dublin, August 1979. Edited by Murray, D.A.. Pergamon Press, Oxford. pp. 315322.Google Scholar
Gross, J., Schmolz, E., and Hilker, M. 2004. Thermal adaptations of the leaf beetle Chrysomela lapponica (Coleoptera: Chrysomelidae) to different climes of central and northern Europe. Environmental Entomology, 33: 799806.CrossRefGoogle Scholar
Gross, P. 1993. Insect behavioral and morphological defenses against parasitoids. Annual Review of Entomology, 38: 251273.CrossRefGoogle Scholar
Hadley, N.F. (Editor). 1975. Environmental physiology of desert organisms. Dowden, Hutchinson and Ross, Stroudsberg, Pennsylvania.Google Scholar
Hadley, N.F. 1994. Water relations of terrestrial arthropods. Academic Press, San Diego.Google Scholar
Hamilton, W.J. 1975. Coloration and its thermal consequences for diurnal desert insects. In Environmental physiology of desert organisms. Edited by Hadley, N.F.. Dowden, Hutchinson and Ross, Stroudsberg, Pennsylvania. pp. 6789.Google Scholar
Hare, K.F., and Hay, J.E. 1974. The climate of Canada and Alaska. In Climates of North America. World survey of climatology. Vol. 11. Edited by Bryson, R.A. and Hare, F.K.. Elsevier Scientific Publishing Company, New York. pp. 49192.Google Scholar
Hassall, M., Walters, R.J., Telfer, M., and Hassall, M.R.J. 2006. Why does a grasshopper have fewer, larger offspring at its range limits? Journal of Evolutionary Biology, 19: 267276.CrossRefGoogle ScholarPubMed
Hayward, S.A.L., Worland, M.R., Convey, P., and Bale, J.S. 2003. Temperature preferences of the mite, Alaskozetes antarcticus, and the collembolan, Cryptopygus antarcticus from the maritime Antarctic. Physiological Entomology, 28: 114121.CrossRefGoogle Scholar
Hayward, S.A.L., Worland, M.R., Convey, P., and Bale, J.S. 2004. Habitat moisture availability and the local distribution of the Antarctic Collembola Cryptopygus antarcticus and Friesea grisea. Soil Biology and Biochemistry, 36: 927934.CrossRefGoogle Scholar
Hayward, S.A.L., Pavlides, S.C., Tammariello, S.P., Rinehart, J.P., and Denlinger, D.L. 2005. Temporal expression patterns of diapause-associated genes in flesh fly pupae from the onset of diapause through post-diapause quiescence. Journal of Insect Physiology, 51: 631640.CrossRefGoogle ScholarPubMed
Heatwole, H. 1996. Energetics of desert invertebrates. Springer, Berlin.CrossRefGoogle Scholar
Heinrich, B. (Editor). 1981. Insect thermoregulation. Wiley, New York.Google Scholar
Heinrich, B. 1993. The hot-blooded insects: strategies and mechanisms of thermoregulation. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Henschel, J.R. 1998. Dune spiders of the Negev Desert with notes on Cerbalus psammodes (Heteropodidae). Israel Journal of Zoology, 44: 243251.Google Scholar
Hercus, M.J., Berrigan, D., Blows, M.W., Magiafoglou, A., and Hoffmann, A.A. 2000. Resistance to temperature extremes between and within life cycle stages in Drosophila serrata, D. birchii and their hybrids: intraspecific and interspecific comparisons. Biological Journal of the Linnean Society, 71: 403416.CrossRefGoogle Scholar
Higaki, M. 2006. Repeated cycles of chilling and warming effectively terminate prolonged larval diapause in the chestnut weevil, Curculio sikkimensis. Journal of Insect Physiology, 52: 514519.CrossRefGoogle ScholarPubMed
Higaki, M., and Ando, Y. 2005. Effects of temperature during chilling and pre-chilling periods on diapause and post-diapause development in a katydid, Eobiana engelhardti subtropica. Journal of Insect Physiology, 51: 709716.CrossRefGoogle Scholar
Hippa, H., and Koponen, S. 1984. Parasitism of larvae of Galerucini (Col., Chrysomelidae) by larvae of Asecodes mento (Hym., Eulophidae). Reports from the Kevo Subarctic Research Station, 19: 6365.Google Scholar
Hoback, W.W., and Stanley, D.W. 2001. Insects in hypoxia. Journal of Insect Physiology, 47: 533542.CrossRefGoogle ScholarPubMed
Hockham, L.R., Graves, J.A., and Ritchie, M.G. 2001. Variable maternal control of facultative egg diapause in the bushcricket Ephippiger ephippiger. Ecological Entomology, 26: 143147.CrossRefGoogle Scholar
Hodek, I. 1971. Sensitivity to photoperiod in Aelia acuminata (L.) after adult diapause. Oecologia, 6: 152155.CrossRefGoogle ScholarPubMed
Hodek, I. 1973. Biology of Coccinellidae. Junk, The Hague.CrossRefGoogle Scholar
Hodek, I. 1981. Le rôle des signaux de l'environnement et des processus endogènes dans la régulation de la reproduction par la diapause imaginale. Bulletin de la Société entomologique de France, 106: 317326.Google Scholar
Hodek, I. 1983. Role of environmental factors and endogenous mechanisms in the seasonality of reproduction in insects diapausing as adults. In Diapause and life cycle strategies in insects. Series Entomologica. Vol. 23. Edited by Brown, V.K. and Hodek, I.. Junk, The Hague. pp. 933.Google Scholar
Hodkinson, I.D. 2005 a. Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews, 80: 489513.CrossRefGoogle ScholarPubMed
Hodkinson, I.D. 2005 b. Adaptations of invertebrates to terrestrial Arctic environments. Transactions of the Royal Norwegian Society of Sciences and Letters, 2005(2): 145.Google Scholar
Hodkinson, I.D., and Bird, J.M. 2004. Anoxia tolerance in high Arctic terrestrial microarthropods. Ecological Entomology, 29: 506509.CrossRefGoogle Scholar
Hodkova, M., and Hodek, I. 2004. Photoperiod, diapause and cold-hardiness. European Journal of Entomology, 101: 445458.CrossRefGoogle Scholar
Hoffmann, A.A., and Harshman, L.G. 1999. Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. Heredity, 83: 637643.CrossRefGoogle ScholarPubMed
Hoffmann, A.A., Sorensen, J.G., and Loeschcke, V. 2003. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology, 28: 175216.CrossRefGoogle Scholar
Hoffmann, A.A., Shirriffs, J., and Scott, M. 2005 a. Relative importance of plastic vs. genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Functional Ecology, 19: 222227.CrossRefGoogle Scholar
Hoffmann, A.A., Hallas, R., Anderson, A.R., and Telonis-Scott, M. 2005 b. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. Journal of Evolutionary Biology, 18: 804810.CrossRefGoogle ScholarPubMed
Holmstrup, M., and Zachariassen, K.E. 1996. Physiology of cold hardiness in earthworms. Comparative Biochemistry and Physiology A, 115: 91101.CrossRefGoogle Scholar
Holmstrup, M., Bayley, M., and Ramløv, H. 2002. Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proceedings of the National Academy of Sciences of the United States of America, 99: 57165720.CrossRefGoogle ScholarPubMed
Honĕk, A., and Kocourek, F. 1990. Temperature and development time in insects: a general relationship between thermal constants. Zoologische Jahrbücher Systematik, 117: 401439.Google Scholar
Hopper, K.R. 1999. Risk-spreading and bet-hedging in insect population biology. Annual Review of Entomology, 4: 535560.CrossRefGoogle Scholar
Horton, D.R., and Moore, J. 1993. Behavioral effects of parasites and pathogens in insect hosts. In Parasites and pathogens of insects. Vol. 1. Parasites. Edited by Beckage, N.E., Thompson, S.N., and Federici, B.A.. Academic Press, San Diego. pp. 107124.CrossRefGoogle Scholar
Humphries, P., and Baldwin, D.S. 2003. Drought and aquatic ecosystems: an introduction. Freshwater Biology, 48: 11411146.CrossRefGoogle Scholar
Hunt, J., Brooks, R., and Jennions, M.D. 2005. Female mate choice as a condition-dependent life-history trait. American Naturalist, 166: 7992.CrossRefGoogle ScholarPubMed
Hynes, H.B.N., and Hynes, M.E. 1975. The life history of many of the stoneflies (Plecoptera) of southeastern mainland Australia. Australian Journal of Marine Freshwater Research, 26: 113153.CrossRefGoogle Scholar
Ide, F.P., Twinn, C.R., and Davies, D.M. 1958. Seasonal emergence of black flies from streams in northern Canada. Proceedings of the 10th International Congress of Entomology (Montreal 1956), 3: 809.Google Scholar
Ingrisch, S. 1986. The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera). 1. The effect of temperature on embryonic development and hatching. Oecologia, 70: 606616.CrossRefGoogle Scholar
Ishihara, M. 1998. Geographical variation in insect developmental period: effect of host plant phenology on the life cycle of the bruchid seed feeder Kytorhinus sharpianus. Entomologia Experimentalis et Applicata, 87: 311319.CrossRefGoogle Scholar
Ishihara, M., and Shimada, M. 1995. Trade-off in allocation of metabolic reserves: effects of diapause on egg production and adult longevity in a multivoltine bruchid, Kytorhinus sharpianus. Functional Ecology, 9: 618624.CrossRefGoogle Scholar
Izumi, Y., Sonoda, S., Yoshida, H., Danks, H.V., and Tsumuki, H. 2006. Role of membrane transport of water and glycerol in the freeze tolerance of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Journal of Insect Physiology, 52: 215220.CrossRefGoogle Scholar
Jeanne, R.L. 1975. The adaptiveness of social wasp nest architecture. Quarterly Review of Biology, 50: 267287.CrossRefGoogle Scholar
Jermy, T. 1967. Experiments on the factors governing diapause in the codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae). Acta Phytopathologica et Entomologica Hungarica, 2: 4960.Google Scholar
Jõgar, K., Kuusik, A., Metspalu, L., Hiiesaar, K., Luik, A., Mänd, M., and Martin, A.-J. 2004. The relations between the patterns of gas exchange and water loss in diapausing pupae of large white butterfly Pieris brassicae (Lepidoptera: Pieridae). European Journal of Entomology, 101: 467472.CrossRefGoogle Scholar
Jönsson, K.I. 2003. Causes and consequences of excess resistance in cryptobiotic metazoans. Physiological and Biochemical Zoology, 76: 429435.CrossRefGoogle ScholarPubMed
Jung, D.-O., and Lee, K.-Y. 2005. Identification of low molecular weight diapause-associated proteins of two-spotted spider mite, Tetranychus urticae. Entomological Research, 35: 213218.Google Scholar
Kalushkov, P., Hodková, M., Nedvěd, O., and Hodek, I. 2001. Effect of thermoperiod on diapause intensity in Pyrrhocoris apterus (Heteroptera Pyrrhocoridae). Journal of Insect Physiology, 47: 5561.CrossRefGoogle ScholarPubMed
Kaneko, J., and Katagiri, C. 2004. Epicuticular wax of large and small white butterflies, Pieris brassicae and P. rapae crucivora: qualitative and quantitative comparison between diapause and non-diapause pupae. Naturwissenschaften, 91: 320323.CrossRefGoogle ScholarPubMed
Kanwisher, J.W. 1966. Tracheal gas dynamics in pupae of the cecropia silkworm. Biological Bulletin (Woods Hole), 130: 96105.CrossRefGoogle Scholar
Karlsson, B., and Van Dyck, H. 2005. Does habitat fragmentation affect temperature-related life-history traits? A laboratory test with a woodland butterfly. Proceedings of the Royal Society of London Series B Biological Sciences, 272: 12571263.Google ScholarPubMed
Kashima, T., Nakamura, T., and Tojo, S. 2006. Uric acid recycling in the shield bug, Parastrachia japonensis (Hemiptera: Parastrachiidae), during diapause. Journal of Insect Physiology, 52: 816825.CrossRefGoogle ScholarPubMed
Kause, A., Saloniemi, I., Morin, J.-P., Haukioja, E., Hanhimäki, S., and Ruohomäki, K. 2001. Seasonally varying diet quality and the quantitative genetics of development time and body size in birch feeding insects. Evolution, 55: 19922001.Google ScholarPubMed
Kayukawa, T., Chen, B., Miyazaki, S., Itoyama, K., Shinoda, T., and Ishikawa, Y. 2005. Expression of mRNA for the t-complex polypeptide-1, a subunit of chaperonin CCT, is upregulated in association with increased cold hardiness in Delia antiqua. Cell Stress and Chaperones, 10: 204210.CrossRefGoogle ScholarPubMed
Kevan, P.G. 1975. Sun-tracking solar furnaces in high arctic flowers: significance for pollination and insects. Science (Washington, D.C.), 189: 723726.CrossRefGoogle ScholarPubMed
Kevan, P.G. 1989. Thermoregulation in arctic insects and flowers: adaptation and co-adaptation in behaviour, anatomy, and physiology. In Thermal physiology. Edited by Mercer, J.B.. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam. pp. 747753.Google Scholar
Kevan, P.G., and Shorthouse, J.D. 1970. Behavioural thermoregulation by high arctic butterflies. Arctic, 23: 268279.CrossRefGoogle Scholar
Kevan, P.G., Jensen, T.S., and Shorthouse, J.D. 1982. Body temperatures and behavioral thermoregulation of high arctic woolly-bear caterpillars and pupae (Gynaephora rossi, Lymantriidae: Lepidoptera) and the importance of sunshine. Arctic and Alpine Research, 14: 125136.CrossRefGoogle Scholar
Kikawada, T., Minakawa, N., Watanabe, M., and Okuda, T. 2005. Factors inducing successful anhydrobiosis in the African chironomid Polypedilum vanderplanki: significance of the larval tubular nest. Integrative and Comparative Biology, 45: 710714.CrossRefGoogle ScholarPubMed
Kimura, M.T. 1990. Quantitative response to photoperiod during reproductive diapause in the Drosophila auraria species-complex. Journal of Insect Physiology, 36: 147152.CrossRefGoogle Scholar
Kiss, B., and Samu, F. 2005. Life history adaptation to changeable agricultural habitats: developmental plasticity leads to cohort splitting in an agrobiont wolf spider. Environmental Entomology, 34: 619626.CrossRefGoogle Scholar
Klingenberg, C.P., and Spence, J.R. 1997. On the role of body size for life-history evolution. Ecological Entomology, 22: 5568.CrossRefGoogle Scholar
Klok, C.J., and Chown, S.L. 1999. Assessing the benefits of aggregation: thermal biology and water relations of anomalous Emperor Moth caterpillars. Functional Ecology, 13: 417427.CrossRefGoogle Scholar
Knight, K.L., and Baker, T.E. 1962. The role of substrate moisture content in the selection of oviposition sites by Aedes taeniorhynchus (Wied.) and A. sollicitans (Walk.). Mosquito News, 22: 247254.Google Scholar
Knülle, W. 1984. Water vapour uptake in mites and insects: an ecophysiological and evolutionary perspective. In Acarology. VI. Vol. 1. Edited by Griffiths, D.A. and Bowman, C.E.. Ellis Horwood, Ltd., Chichester, England. pp. 7182.Google Scholar
Knülle, W. 1991 a. Genetic and environmental determinants of hypopus duration in the stored-product mite Lepidoglyphus destructor. Experimental and Applied Acarology, 10: 231258.CrossRefGoogle ScholarPubMed
Knülle, W. 1991 b. Life-cycle strategies in unpredictably varying environments: genetic adaptations in a colonizing mite. In The Acari: reproduction, development and life-history strategies. Edited by Schuster, R. and Murphy, P.W.. Chapman and Hall, London. pp. 5155.CrossRefGoogle Scholar
Knülle, W. 2003. Interaction between genetic and inductive factors controlling the expression of dispersal and dormancy morphs in dimorphic astigmatic mites. Evolution, 57: 828838.Google ScholarPubMed
Kogure, M. 1933. The influence of light and temperature on certain characters of the silkworm, Bombyx mori. Journal of the Department of Agriculture, Kyushu Imperial University, 4: 193.CrossRefGoogle Scholar
Košt'ál, V., and Šimek, P. 1998. Changes in fatty acid composition of phospholipids and triacylglycerols after cold-acclimation of an aestivating insect prepupa. Journal of Comparative Physiology B Biochemical, Systemic and Environmental Physiology, 168: 453460.CrossRefGoogle Scholar
Košt'ál, V., and Šimek, P. 2000. Overwintering strategy in Pyrrhocoris apterus (Heteroptera): the relations between life-cycle, chill tolerance and physiological adjustments. Journal of Insect Physiology, 46: 13211329.CrossRefGoogle Scholar
Košt'ál, V., Shimada, K., and Hayakawa, Y. 2000. Induction and development of winter larval diapause in a drosophilid fly, Chymomyza costata. Journal of Insect Physiology, 46: 417428.CrossRefGoogle Scholar
Košt'ál, V., Vambera, J., and Bastl, J. 2004. On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. Journal of Experimental Biology, 207: 15091521.CrossRefGoogle Scholar
Koziol, M. 1998. Influence of altitude on adult emergence and dynamics of Kaltenbachiola strobi (Winnertz) (Diptera: Cecidomyiidae) populations and its parasites in the Tatra National Park, Poland. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 71: 121127.CrossRefGoogle Scholar
Kristiansen, E., and Zachariassen, K.E. 2005. The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology, 51: 262280.CrossRefGoogle ScholarPubMed
Kroon, A., Veenendaal, R.L., Egas, M., Bruin, J., and Sabelis, M.W. 2005. Diapause incidence in the two-spotted spider mite increases due to predator presence, not due to selective predation. Experimental and Applied Acarology, 35: 7381.CrossRefGoogle Scholar
Kukal, O. 1991. Behavioral and physiological adaptations to cold in a freeze-tolerant arctic insect. In Insects at low temperature. Edited by Lee, R.E. Jr., and Denlinger, D.L.. Chapman and Hall, New York. pp. 276300.CrossRefGoogle Scholar
Kukal, O., and Kevan, P.G. 1987. The influence of parasitism on the life history of a high arctic insect, Gynaephora groenlandica (Wöcke) (Lepidoptera: Lymantriidae). Canadian Journal of Zoology, 65: 156163.CrossRefGoogle Scholar
Kukal, O., Duman, J.G., and Serianni, A.S. 1989. Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. Journal of Comparative Physiology B, 158: 661671.CrossRefGoogle ScholarPubMed
Lake, P.S. 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology, 48: 11611172.CrossRefGoogle Scholar
Lantsov, V.I. 1982. Adaptive characteristics of the life cycle of the arctic crane fly Tipula carinifrons (Diptera, Tipulidae). Ekologiya, 13: 7176. [In Russian.] [Translation in Soviet Journal of Ecology, 13: 67–71.]Google Scholar
Lee, R.E. Jr., 1991. Principles of insect low temperature tolerance. In Insects at low temperature. Edited by Lee, R.E. Jr., and Denlinger, D.L.. Chapman and Hall, New York. pp. 1746.CrossRefGoogle Scholar
Lee, R.E. Jr., Elnitsky, M.A., Rinehart, J.P., Hayward, S.A.L., Sandro, L.H., and Denlinger, D.L. 2006 a. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Journal of Experimental Biology, 209: 399406.CrossRefGoogle ScholarPubMed
Lee, R.E. Jr., Damodaran, K., Yi, S.-X., and Lorigan, G.A. 2006 b. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology, 52: 459463.CrossRefGoogle ScholarPubMed
Leong, K.L.H. 1990. Microenvironmental factors associated with the winter habitat of the monarch butterfly (Lepidoptera: Danaidae) in central California. Annals of the Entomological Society of America, 83: 906910.CrossRefGoogle Scholar
Levin, D.B., Danks, H.V., and Barber, S.A. 2003. Variations in mitochondrial DNA and gene transcription in freezing-tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Molecular Biology, 12: 281289.CrossRefGoogle ScholarPubMed
Li, N., Andorfer, C.A., and Duman, J.G. 1998. Enhancement of insect antifreeze protein activity by solutes of low molecular mass. Journal of Experimental Biology, 201: 22432251.CrossRefGoogle ScholarPubMed
Lighton, J.R.B. 1996. Discontinuous gas exchange in insects. Annual Review of Entomology, 41: 309324.CrossRefGoogle ScholarPubMed
Lighton, J.R.B. 1998. Notes from underground: towards ultimate hypotheses of cyclic, discontinuous gas exchange in tracheate arthropods. American Zoologist, 38: 483491.CrossRefGoogle Scholar
Llewellyn, K.S., Loxdale, H.D., Harrington, R., Brookes, C.P., Clark, S.J., and Sunnucks, P. 2003. Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using micro-satellites. Molecular Ecology, 12: 2134.CrossRefGoogle Scholar
Lundheim, R. 2002. Physiological and ecological significance of biological ice nucleators. Philosophical Transactions of the Royal Society of London B Biological Sciences, 357: 937943.CrossRefGoogle ScholarPubMed
Lutz, P.E. 1968. Effects of temperature and photoperiod on larval development in Lestes eurinus (Odonata: Libellulidae). Ecology, 49: 637644.CrossRefGoogle Scholar
Lutz, P.E. 1974. Environmental factors controlling duration of larval instars in Tetragoneuria cynosura (Odonata). Ecology, 55: 630637.CrossRefGoogle Scholar
Lyon, B.E., and Cartar, R.V. 1996. Functional significance of the cocoon in two arctic Gynaephora moth species. Proceedings of the Royal Society of London Series B Biological Sciences, 263: 11591163.Google Scholar
Lytle, D.A. 2002. Flash floods and aquatic insect life-history evolution: evaluation of multiple models. Ecology, 83: 370385.CrossRefGoogle Scholar
Macdonald, S.S., Rako, L., Batterham, P., and Hoffmann, A.A. 2004. Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster. Journal of Insect Physiology, 50: 695700.CrossRefGoogle ScholarPubMed
MacLean, S.F. Jr., 1973. Life cycle and growth energetics of the arctic cranefly Pedicia hannai antennata. Oikos, 24: 436443.CrossRefGoogle Scholar
Marchenko, M.I., and Vinogradova, E.B. 1984. Influence of seasonal temperature changes on the rate of carcass destruction by fly larvae. Sudebno-meditskinskaya Expertiza, 4: 1114. [In Russian.]Google Scholar
Margraf, N., Gotthard, K., and Rahier, M. 2003. The growth strategy of an alpine beetle: maximization or individual growth adjustment in relation to seasonal time horizons? Functional Ecology, 17: 605610.CrossRefGoogle Scholar
Masaki, S. 1978. Climatic adaptation and species status in the lawn ground cricket. II. Body size. Oecologia 35: 343356.CrossRefGoogle ScholarPubMed
Masaki, S. 1980. Summer diapause. Annual Review of Entomology, 25: 125.CrossRefGoogle Scholar
Masaki, S. 2002. Ecophysiological consequences of variability in diapause intensity. European Journal of Entomology, 99: 143154.CrossRefGoogle Scholar
McGregor, R. 1997. Influence of photoperiod on larval development in the leafmining moth Phyllonorycter mespilella (Lepidoptera: Gracillaridae). Annals of the Entomological Society of America, 90: 333336.CrossRefGoogle Scholar
Mendl, H., and Müller, K. 1978. The colonization cycle of Amphinemura standfussi Ris (Ins.: Plecoptera) in the Abisko area. Hydrobiologia, 60: 109111.CrossRefGoogle Scholar
Menu, F., and Debouzie, D. 1993. Coin-flipping plasticity and prolonged diapause in insects: example of the chestnut weevil Curculio elephas (Coleoptera: Curculionidae). Oecologia, 93: 367373.CrossRefGoogle ScholarPubMed
Menu, F., and Desouhant, E. 2002. Bet-hedging for variability in life cycle duration: bigger and later-emerging chestnut weevils have increased probability of a prolonged diapause. Oecologia, 132: 167174.CrossRefGoogle ScholarPubMed
Menu, F., Roebuck, J.-P., and Viala, M. 2000. Bet-hedging diapause strategies in stochastic environments. American Naturalist, 155: 724734.CrossRefGoogle ScholarPubMed
Messina, F.J., and Fry, J.D. 2003. Environment-dependent reversal of a life history trade-off in the seed beetle Callosobruchus maculatus. Journal of Evolutionary Biology, 16: 501509.CrossRefGoogle ScholarPubMed
Messina, F.J., and Slade, A.F. 1999. Expression of a life-history trade-off in a seed beetle depends on environmental context. Physiological Entomology, 24: 358363.CrossRefGoogle Scholar
Michaud, M.R., and Denlinger, D.L. 2005. Molecular modalities of insect cold survival: current understanding and future trends. In Animals and environments. Proceedings of the Third International Conference of Comparative Physiology and Biochemistry, Kwa-Zulu Natal, South Africa, 7–13 August 2004. ICS 1275. Edited by Morris, S. and Vosloo, A.. Elsevier Science, Amsterdam. pp. 3246.Google Scholar
Miller, A. 1976. The climate of Chile. In Climates of Central and South America. World survey of climatology. Vol. 12. Edited by Schwerdtfeger, W. and Landsberg, H.E.. Elsevier, New York. pp. 113145.Google Scholar
Miller, P.L. 1968. On the occurrence and some characteristics of Cyrtopus fastuosus Bigot (Dipt. Stratiomyidae) and Polypedilum sp. (Dipt. Chironomidae) from temporary habitats in western Nigeria. Entomologist's Monthly Magazine, 106: 233238.Google Scholar
Miyatake, T. 1998. Genetic changes of life history and behavioral traits during mass-rearing in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae). Researches on Population Ecology, 40: 301310.CrossRefGoogle Scholar
Miyatake, T., and Yamagishi, M. 1999. Rapid evolution of larval development time during mass-rearing in the melon fly, Bactrocera cucurbitae. Researches on Population Ecology, 41: 291297.CrossRefGoogle Scholar
Mondor, E.B., Rosenheim, J.A., and Addicott, J.F. 2005. Predator-induced transgenerational phenotypic plasticity in the cotton aphid. Oecologia, 142: 104108.CrossRefGoogle ScholarPubMed
Moreira, C.J., and Spata, M.C. 2002. Dynamics of evolution and resistance to starvation of Triatoma vitticeps (Stal 1859) (Reduviidae: Triatominae), submitted to two different regimens of food deprivation. Memorias do Instituto Oswaldo Cruz, 97: 10491055.CrossRefGoogle ScholarPubMed
Morewood, W.D., and Ring, R.A. 1998. Revision of the life history of the high arctic moth Gynaephora groenlandica (Wocke) (Lepidoptera: Lymantriidae). Canadian Journal of Zoology, 76: 13711381.CrossRefGoogle Scholar
Morin, P.J., McMullen, D.C., and Storey, K.B. 2005. HIF-1 alpha involvement in low temperature and anoxia survival by a freeze tolerant insect. Molecular and Cellular Biochemistry, 280: 99106.CrossRefGoogle Scholar
Morse, D.H., and Stephens, E.G. 1996. The consequences of adult foraging success on the components of lifetime fitness in a semelparous, sit and wait predator. Evolutionary Ecology, 10: 361373.CrossRefGoogle Scholar
Mousseau, T.A., and Dingle, H. 1991. Maternal effects in insect life histories. Annual Review of Entomology, 36: 511534.CrossRefGoogle Scholar
Nagell, B., and Brittain, J.E. 1977. Winter anoxia — a general feature of ponds in cold temperate regions. Internationale Revue der Gesamten Hydrobiologie, 62: 821824.CrossRefGoogle Scholar
Nakamura, K., and Numata, H. 2000. Photoperiodic control of the intensity of diapause and diapause development in the bean bug, Riptortus clavatus (Heteroptera: Alydidae). European Journal of Entomology, 97: 1923.CrossRefGoogle Scholar
Nalepa, C.A., Kennedy, G.G., and Brownie, C. 2005. Role of visual contrast in the alighting behavior of Harmonia axyridis (Coleoptera: Coccinellidae) at overwintering sites. Environmental Entomology, 34: 425431.CrossRefGoogle Scholar
Neal, J.W. Jr., Chittams, J.L., and Bentz, J.-A. 1997. Spring emergence by larvae of the eastern tent caterpillar (Lepidoptera: Lasiocampidae): a hedge against high-risk conditions. Annals of the Entomological Society of America, 90: 596603.CrossRefGoogle Scholar
Nedvĕd, O, Lavy, D., and Verhoef, H.A. 1998. Modelling the time–temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chill-sensitive collembolan. Functional Ecology, 12: 816824.CrossRefGoogle Scholar
Nelson, D.R., and Lee, R.E. Jr., 2004. Cuticular lipids and desiccation resistance in overwintering larvae of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology, 138: 313320.CrossRefGoogle Scholar
Neven, L.G., Duman, J.G., Beals, J.M., and Castellino, F.J. 1986. Overwintering adaptations of the stag beetle, Ceruchus piceus: removal of ice nucleators in the winter to promote supercooling. Journal of Comparative Physiology B, 156: 707716.CrossRefGoogle Scholar
Nishizuka, M., Azuma, A., and Masaki, S. 1998. Diapause response to photoperiod and temperature in Lepisma saccharina Linnaeus (Thysanura: Lepismatidae). Entomological Science, 1: 714.Google Scholar
Nomura, M., and Ishikawa, Y. 2000. Biphasic effect of low temperature on completion of winter diapause in the onion maggot, Delia antiqua. Journal of Insect Physiology, 46: 373377.CrossRefGoogle ScholarPubMed
Norling, U. 1971. The life history and seasonal regulation of Aeschna viridis Eversm. in Southern Sweden (Odonata). Entomologica Scandinavica, 2: 170190.CrossRefGoogle Scholar
Norry, F.M., and Loeschcke, V. 2002. Temperature-induced shifts in associations of longevity with body size in Drosophila melanogaster. Evolution, 56: 299306.Google ScholarPubMed
Noy-Meir, L. 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4: 2551.CrossRefGoogle Scholar
Nylin, S. 1994. Seasonal plasticity and life-cycle adaptations in butterflies. In Insect life-cycle polymorphism: theory, evolution and ecological consequences for seasonality and diapause control. Series Entomologica, Vol. 52. Edited by Danks, H.V.. Kluwer Academic Publishers, Dordrecht, Germany. pp. 4167.CrossRefGoogle Scholar
Nylin, S., and Gotthard, K. 1998. Plasticity in life-history traits. Annual Review of Entomology, 43: 6383.CrossRefGoogle ScholarPubMed
Nylin, S., and Svärd, L. 1991. Latitudinal patterns in the size of European butterflies. Holarctic Ecology, 14: 192202.Google Scholar
Ohashi, K., Sakuratani, Y., Osawa, N., Yano, S., and Takafuji, A. 2005. Thermal microhabitat use by the ladybird beetle, Coccinella septempunctata (Coleoptera: Coccinellidae), and its life cycle consequences. Environmental Entomology, 34: 432439.CrossRefGoogle Scholar
Ohtsu, T., Kimura, M.T., and Katagiri, C. 1998. How Drosophila species acquire cold tolerance: qualitative changes of phospholipids. European Journal of Biochemistry, 252: 608611.CrossRefGoogle ScholarPubMed
Oke, T.R. 1987. Boundary layer climates. 2nd ed. Routledge, London and Wiley, New York.Google Scholar
Oku, T. 1983. Aestivation and migration in noctuid moths. In Diapause and life cycle strategies in insects. Edited by Brown, V.K. and Hodek, I.. Junk, The Hague. pp. 219231.Google Scholar
Oliver, D.R. 1968. Adaptations of arctic Chironomidae. Annales Zoologici Fennici, 5: 111118.Google Scholar
Oliver, J.E. (Editor). 2005. Encyclopedia of world climatology. Springer-Verlag, New York.CrossRefGoogle Scholar
Olsen, T.M., Sass, S.J., Li, N., and Duman, J.G. 1998. Factors contributing to seasonal increases in inoculative freezing resistance in overwintering fire-colored beetle larvae Dendroides canadensis (Pyrochroidae). Journal of Experimental Biology, 201: 15851594.CrossRefGoogle Scholar
Östman, O. 2005. Asynchronous temporal variation among sites in condition of two carabid species. Ecological Entomology, 30: 6369.CrossRefGoogle Scholar
Overgaard, J., Sorensen, J.G., Petersen, S.O., Loeschcke, V., and Holmstrup, M. 2005. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Journal of Insect Physiology, 51: 11731182.CrossRefGoogle ScholarPubMed
Parker, A.R., and Lawrence, C.R. 2001. Water capture by a desert beetle. Nature (London), 414: 3334.CrossRefGoogle ScholarPubMed
Peckarsky, B.L., Taylor, B.W., and Caudill, C.C. 2000. Hydrologic and behavioral constraints on oviposition of stream insects: implications for adult dispersal. Oecologia, 125: 186200.CrossRefGoogle ScholarPubMed
Peterson, D.M., and Hamner, W.M. 1968. Photo-periodic control of diapause in the codling moth. Journal of Insect Physiology, 14: 519528.CrossRefGoogle Scholar
Pfrimmer, T.R., and Merkl, M.E. 1981. Boll weevil: winter survival in surface woods trash in Mississippi. Environmental Entomology, 10: 419423.CrossRefGoogle Scholar
Phelan, J.P., Archer, M.A., Beckman, K.A., Chippindale, A.K., Nusbaum, T.J., and Rose, M.R. 2003. Breakdown in correlations during laboratory evolution. I. Comparative analyses of Drosophila populations. Evolution, 57: 527535.Google ScholarPubMed
Pitts, K.M., and Wall, R. 2005. Winter survival of larvae and pupae of the blowfly, Lucilia sericata (Diptera: Calliphoridae). Bulletin of Entomological Research, 95: 179186.CrossRefGoogle ScholarPubMed
Pitts, K.M., and Wall, R. 2006. Cold shock and cold tolerance in larvae and pupae of the blow fly, Lucilia sericata. Physiological Entomology, 31: 5762.CrossRefGoogle Scholar
Portig, W.H. 1976. The climate of Central America. In Climates of Central and South America, World survey of climatology. Vol. 12. Edited by Schwerdtfeger, W. and Landsberg, H.E.. Elsevier, Amsterdam. pp. 405478.Google Scholar
Powell, J.A., and Jenkins, J.L. 2000. Seasonal temperature alone can synchronize life cycles. Bulletin of Mathematical Biology, 62: 977998.CrossRefGoogle ScholarPubMed
Powell, G., Tosh, C.R., and Hardie, J. 2006. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annual Review of Entomology, 51: 309330.CrossRefGoogle ScholarPubMed
Powell, J.A. 2001. Longest insect dormancy: Yucca moth larvae (Lepidoptera: Prodoxidae) metamorphose after 20, 25, and 30 years in diapause. Annals of the Entomological Society of America, 94: 677680.CrossRefGoogle Scholar
Powell, J.A., and Logan, J.A. 2005. Insect seasonality: circle map analysis of temperature-driven life cycles. Theoretical Population Biology, 67: 161179.CrossRefGoogle ScholarPubMed
Powell, J.A., Jenkins, J.L., Logan, J.A., and Bentz, B.J. 2000. Seasonal temperature alone can synchronize life cycles. Bulletin of Mathematical Biology, 62: 977998.CrossRefGoogle ScholarPubMed
Powell, S.J., and Bale, J.S. 2005. Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. Journal of Experimental Biology, 208: 26152620.CrossRefGoogle ScholarPubMed
Pritchard, G. 1979. Study of dynamics of populations of aquatic insects: the problem of variability in life history exemplified by Tipula sacra Alexander (Diptera: Tipulidae). Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie, 20: 26342640.Google Scholar
Prowse, T.D., and Culp, J.M. 2003. Ice breakup: a neglected factor in river ecology. Canadian Journal of Civic Engineering, 30: 128144.CrossRefGoogle Scholar
Pugh, P.J.A., and Mercer, R.D. 2001. Littoral Acari of Marion Island: ecology and extreme wave action. Polar Biology, 24: 239243.CrossRefGoogle Scholar
Punzo, F. 2000. Desert arthropods: life history variations. Springer, Heidelberg.CrossRefGoogle Scholar
Qin, W., Neal, S.J., Robertson, R.M., Westwood, J.T., and Walker, V.K. 2005. Cold hardening and transcriptional change in Drosophila melanogaster. Insect Molecular Biology, 14: 607613.CrossRefGoogle ScholarPubMed
Rako, L., and Hoffmann, A.A. 2006. Complexity of the cold acclimation response in Drosophila melanogaster. Journal of Insect Physiology, 52: 94104.CrossRefGoogle ScholarPubMed
Ramløv, H. 2000. Aspects of natural cold tolerance in ectothermic animals. Human Reproduction, 15: 2646.CrossRefGoogle ScholarPubMed
Ramløv, H., Wharton, D.A., and Wilson, P.W. 1996. Recrystallization in a freezing tolerant Antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera: Stenopelmatidae). Cryobiology, 33: 607613.CrossRefGoogle Scholar
Rantala, M.J., and Roff, D.A. 2005. An analysis of trade-offs in immune function, body size and development time in the Mediterranean Field Cricket, Gryllus bimaculatus. Functional Ecology, 19: 323330.CrossRefGoogle Scholar
Rasa, O.A.E. 1994. Behavioural adaptations to moisture as an environmental constraint in a nocturnal burrow-inhabiting Kalahari detritivore Parastizopus armaticeps Peringuey (Coleoptera: Tenebrionidae). Koedoe, 37: 5766.CrossRefGoogle Scholar
Rasa, O.A.E. 1999. Division of labour and extended parenting in a desert tenebrionid beetle. Ethology, 105: 3756.CrossRefGoogle Scholar
Ratisbona, L.R. 1976. The climate of Brazil. In Climates of Central and South America, World survey of climatology. Vol. 12. Edited by Schwerdtfeger, W. and Landsberg, H.E.. Elsevier, Amsterdam. pp. 219293.Google Scholar
Relina, L.I., and Gulevsky, A.K. 2003. A possible role of molecular chaperones in cold adaptation. CryoLetters, 24: 203212.Google ScholarPubMed
Renault, D., Nedved, O., Hervant, F., and Vernon, P. 2004. The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae) during exposure to low temperature. Physiological Entomology, 29: 139145.CrossRefGoogle Scholar
Ricci, C., and Covino, C. 2005. Anhydrobiosis of Adineta ricciae: Costs and benefits. Hydrobiologia, 546: 307314.CrossRefGoogle Scholar
Richards, O.W., and Davies, R.G. (Editors). 1977. Imm's general textbook of entomology. Vol. 1. 10th ed. Chapman and Hall, London.Google Scholar
Riihimaa, A. 1996. Genetic variation in diapause, cold-hardiness and circadian eclosion rhythm in Chymomyza costata. Acta Universitatis Ouluensis Series A Scientiae Rerum Naturalium, 274: 160.Google Scholar
Ring, R.A. 1981. The physiology and biochemistry of cold tolerance in arctic insects. Journal of Thermal Biology, 6: 219229.CrossRefGoogle Scholar
Ring, R.A. 1982. Freezing-tolerant insects with low supercooling points. Comparative Biochemistry and Physiology A, 73: 605612.CrossRefGoogle Scholar
Ring, R.A. 1983. Cold tolerance in Canadian arctic insects. In Plant, animal, and microbial adaptations to terrestrial environments. Edited by Margaris, N.S., Arianoutsou-Faraggitaki, M., and Reiter, R.J.. Plenum Press, New York. pp. 1729.CrossRefGoogle Scholar
Ring, R.A., and Danks, H.V. 1994. Desiccation and cryoprotection: overlapping adaptations. Cryo-Letters, 15: 181190.Google Scholar
Ring, R.A., and Danks, H.V. 1998. The role of trehalose in cold-hardiness and desiccation. Cryo-Letters, 19: 275282.Google Scholar
Roff, D. 1980. Optimizing development time in a seasonal environment: the ‘ups and downs’ of clinal variation. Oecologia, 45: 202208.CrossRefGoogle Scholar
Roff, D.A., Mostowy, S., and Fairbairn, D.J. 2002. The evolution of trade-offs: testing predictions on response to selection and environmental variation. Evolution, 56: 8495.Google ScholarPubMed
Roubik, D.W., and Michener, C.D. 1980. The seasonal cycle and nests of Epicharis zonata, a bee whose cells are below the wet-season water table (Hymenoptera, Anthophoridae). Biotropica, 12: 5660.CrossRefGoogle Scholar
Sagné, J.C., and Canard, M. 1984. Les limites de la resistance au froid et à l'immersion des prenymphes en diapause de Chrysopa perla (L.) (Neuroptera Chrysopidae). Neuroptera International, 3: 7378.Google Scholar
Sakagami, S.F., Tanno, K., Tsutsui, H., and Honma, K. 1985. The role of cocoons in overwintering of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae). Journal of the Kansas Entomological Society, 58: 240247.Google Scholar
Samietz, J., Salser, M.A., and Dingle, H. 2005. Altitudinal variation in behavioural thermo-regulation: local adaptation vs. plasticity in California grasshoppers. Journal of Evolutionary Biology, 18: 10871096.CrossRefGoogle Scholar
Sandberg, J.B., and Stewart, K.W. 2004. Capacity for extended egg diapause in six Isogenoides Klapalek species (Plecoptera: Perlodidae). Transactions of the American Entomological Society, 130: 411423.Google Scholar
Saunders, D.S., Steel, C.G.H., Vafopoulou, X., and Lewis, R.D.). 2002. Insect clocks. 3rd ed. Elsevier, Amsterdam.Google Scholar
Seely, M.K. 1989. Desert invertebrate physiological ecology: is anything special? South African Journal of Science, 85: 266270.Google Scholar
Sei, M. 2004. Larval adaptation of the endangered Maritime Ringlet Coenonympha tullia nipisiquit McDonnough (Lepidoptera: Nymphalidae) to a saline wetland habitat. Environmental Entomology, 33: 15351540.CrossRefGoogle Scholar
Shreve, S.M., Kelty, J.D., and Lee, R.E. Jr., 2004. Preservation of reproductive behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response. Journal of Experimental Biology, 207: 17971802.CrossRefGoogle ScholarPubMed
Sinclair, B.J., and Chown, S.L. 2005 a. Climatic variability and hemispheric differences in insect cold tolerance: support from southern Africa. Functional Ecology, 19: 214221.CrossRefGoogle Scholar
Sinclair, B.J., and Chown, S.L. 2005 b. Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar. Journal of Experimental Biology, 208: 869879.CrossRefGoogle Scholar
Sinclair, B.J., Klok, C.J., Scott, M.B., Terblanche, J.S., and Chown, S.L. 2003. Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology, 49: 10491061.CrossRefGoogle ScholarPubMed
Šlachta, M., Vambera, J., Zahradnčková, H., and Košt'ál, V. 2002. Entering diapause is a prerequisite for successful cold-acclimation in adult Graphosoma lineatum (Heteroptera: Pentatomidae). Journal of Insect Physiology, 48: 10311039.CrossRefGoogle ScholarPubMed
Sømme, L. 1995. Invertebrates in hot and cold arid environments. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Sorensen, J.G., Norry, F.M., Scannapieco, A.C., and Loeschcke, V. 2005. Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World. Journal of Evolutionary Biology, 18: 829837.CrossRefGoogle ScholarPubMed
Sørenson, T. 1941. Temperature relations and phenology of the Northeast Greenland flowering plants. Meddelelser om Grønland, 125: 1291.Google Scholar
Southwick, E.E. 1987. Cooperative metabolism in honey bees: an alternative to antifreeze and hibernation. Journal of Thermal Biology, 12: 155158.CrossRefGoogle Scholar
Søvik, G. 2004. The biology and life history of arctic populations of the littoral mite Ameronothrus fineatus (Acari, Oribatida). Experimental and Applied Acarology, 34: 320.CrossRefGoogle ScholarPubMed
Søvik, G., and Leinaas, H.P. 2003. Long life cycle and high adult survival in an arctic population of the mite Ameronothrus lineatus (Acar, Oribatida) from Svalbard. Polar Biology, 26: 500508.CrossRefGoogle Scholar
Søvik, G., Leinaas, H.P., Ims, R.A., and Solhøy, T. 2003. Population dynamics and life history of the oribatid mite Ameronothrus lineatus (Acari, Oribatida) on the high arctic archipelago of Svalbard. Pedobiologia, 47: 257271.CrossRefGoogle Scholar
Spitzer, K., and Danks, H.V. 2006. Insect bio-diversity of boreal peat bogs. Annual Review of Entomology, 51: 137161.CrossRefGoogle Scholar
Stiefel, V.L., Nechols, J.R., and Margolies, D.C. 1997. Development and survival of Anomoea flavokansiensis (Coleoptera: Chrysomelidae) as affected by temperature. Environmental Entomology, 26: 223228.CrossRefGoogle Scholar
Stillwell, R.C., and Fox, C.W. 2005. Complex patterns of phenotypic plasticity: interactive effects of temperature during rearing and oviposition. Ecology, 86: 924934.CrossRefGoogle Scholar
Stone, G., Atkinson, R., Rokas, A., Csóka, G., and Nieves-Aldrey, J.-L. 2001. Differential success in northwards range expansion between ecotypes of the marble gallwasp Andricus kollari: a tale of two lifecycles. Molecular Ecology, 10: 761778.CrossRefGoogle ScholarPubMed
Storey, K.B., and Storey, J.M. 1999. Gene expression and cold hardiness in animals. In Cold-adapted organisms: ecology, physiology, enzymology and molecular biology. Edited by Margesin, R. and Schinner, F.. Springer-Verlag, Berlin. pp. 385407.CrossRefGoogle Scholar
Suzuki, Y., and Tanaka, S. 2000. Environmental control of nymphal development and diapause in three subtropical populations of a cricket, Modicogryllus confirmatus Walker (Orthoptera: Gryllidae). Entomological Science, 3: 571577.Google Scholar
Tachibana, S.-I., Numata, H., and Goto, S.G. 2005. Gene expression of heat-shock proteins (Hsp23, Hsp70 and Hsp90) during and after larval diapause in the blow fly Lucilia sericata. Journal of Insect Physiology, 51: 641647.CrossRefGoogle ScholarPubMed
Tagawa, J. 1996. Function of the cocoon of the parasitoid wasp, Cotesia glomerata L. (Hymenoptera: Braconidae): protection against desiccation. Applied Entomology and Zoology, 31: 99103.CrossRefGoogle Scholar
Takafuji, A. 1994. Variation in diapause characteristics and its consequences on population phenomena in the two-spotted spider mite, Tetranychus urticae Koch. In Insect life-cycle polymorphism: theory, evolution and ecological consequences for seasonality and diapause control. Series Entomologica, Vol. 52. Edited by Danks, H.V.. Kluwer Academic Publishers, Dordrecht, Germany. pp. 113132.CrossRefGoogle Scholar
Takakura, K. 2004. Variation in egg size within and among generations of the bean weevil, Bruchidius dorsalis (Coleoptera, Bruchidae): effects of host plant quality and paternal nutritional investment. Annals of the Entomological Society of America, 97: 346352.CrossRefGoogle Scholar
Tammaru, T., Ruohomäki, K., and Saloniemi, I. 1999. Within-season variability of pupal period in the autumnal moth: a bet-hedging strategy? Ecology, 80: 16661677.CrossRefGoogle Scholar
Tammaru, T., Nylin, S., Ruohomäki, K., and Gotthard, K. 2004. Compensatory responses in lepidopteran larvae: a test of growth rate maximisation. Oikos, 107: 352362.CrossRefGoogle Scholar
Tanaka, K., and Itô, Y. 1982. Decrease in respiratory rate in a wolf spider, Pardosa astrigera (L. Koch), under starvation. Researches in Population Ecology, 24: 360374.CrossRefGoogle Scholar
Tanaka, S., and Zhu, D.-H. 2004. Presence of three diapauses in a subtropical cockroach: control mechanisms and adaptive significance. Physiological Entomology, 28: 323330.CrossRefGoogle Scholar
Tanaka, S., Arai, T., and Tanaka, K. 1999. Nymphal development, diapause and cold-hardiness in a nymph-overwintering cricket. Entomological Science, 2: 173182.Google Scholar
Tauber, M.J., Tauber, C.A., and Masaki, S. 1986. Seasonal adaptations of insects. Oxford University Press, New York.Google Scholar
Thiele, H.U. 1975. Interactions between photo-periodism and temperature with respect to the control of dormancy in the adult stage of Pterostichus oblongopunctatus F. (Col., Carabidae). I. Experiments on gonad maturation under different climatic conditions in the laboratory. Oecologia, 19: 3947.CrossRefGoogle Scholar
Topp, W. 2003. Phenotypic plasticity and development of cold-season insects (Coleoptera: Leiodidae) and their response to climatic change. European Journal of Entomology, 100: 233243.CrossRefGoogle Scholar
Trankner, A., and Nuss, M. 2005. Risk spreading in the voltinism of Scolitantides orion orion (Pallas, 1771) (Lycaenidae). Nota Lepidopterologica, 28: 5564.Google Scholar
Turnock, W.J., and Fields, P.G. 2005. Winter climates and coldhardiness in terrestrial insects. European Journal of Entomology, 102: 561576.CrossRefGoogle Scholar
Utida, S. 1957. Developmental zero temperature in insects. Japanese Journal of Applied Entomology and Zoology, 1: 4653. [In Japanese.]CrossRefGoogle Scholar
Vali, G. 1995. Principles of ice nucleation. In Biological ice nucleation and its applications. Edited by Lee, R.E. Jr., Warren, G.J., and Gusta, L.V.. American Phytopathological Society, St. Paul, Minnesota. pp. 128.Google Scholar
Van Dyck, H., and Wiklund, C. 2002. Seasonal butterfly design: morphological plasticity among three developmental pathways relative to sex, flight and thermoregulation. Journal of Evolutionary Biology, 15: 216225.CrossRefGoogle Scholar
van Herrewege, J., and David, J.R. 1997. Starvation and desiccation tolerances in Drosophila: comparison of species from different climatic origins. Ecoscience, 4: 151157.CrossRefGoogle Scholar
Vinson, S.B. 1976. Host selection by insect parasitoids. Annual Review of Entomology, 21: 109133.CrossRefGoogle Scholar
Volney, W.J.A., and Liebhold, A.M. 1985. Post-diapause development of sympatric Choristoneura occidentalis and C. retiniana (Lepidoptera: Tortricidae) and their hybrids. The Canadian Entomologist, 117: 14791488.CrossRefGoogle Scholar
Vorburger, C. 2005. Positive genetic correlations among major life-history traits related to ecological success in the aphid Myzus persicae. Evolution, 59: 10061015.Google ScholarPubMed
Vowinckel, E., and Orvig, S. 1970. The climate of the North Polar Basin. In Climates of the polar regions. World survey of climatology, Vol. 14. Edited by Orvig, S.. Elsevier Scientific Publishing Company, New York. pp. 129252.Google Scholar
Vulinec, K. 1990. Collective security: aggregation by insects as a defence. In Insect defences. Adaptive mechanisms of prey and predators. Edited by Evans, D.L. and Schmidt, J.O.. State University of New York, Albany, New York. pp. 251288.Google Scholar
Walker, T.J. 1986. Stochastic polyphenism: coping with uncertainty. Florida Entomologist, 69: 4662.CrossRefGoogle Scholar
Walters, R.J., and Hassall, M. 2006. The temperature-size rule in ectotherms: may a general explanation exist after all? American Naturalist, 167: 510523.CrossRefGoogle Scholar
Wang, L., and Duman, J.G. 2005. Antifreeze proteins of the beetle Dendroides canadensis enhance one another's activities. Biochemistry, 44: 1030510312.CrossRefGoogle ScholarPubMed
Wang, L., and Duman, J.G. 2006. A thaumatin-like protein from larvae of the beetle Dendroides canadensis enhances the activity of antifreeze proteins. Biochemistry, 45: 12781284.CrossRefGoogle ScholarPubMed
Wardaugh, K.G. 1980. The effects of temperature and moisture on the inception of diapause in eggs of the Australian plague locust, Chortoicetes terminifera Walker (Orthoptera: Acrididae). Australian Journal of Ecology, 52: 187191.CrossRefGoogle Scholar
Wardhaugh, K.G. 1986. Diapause strategies in the Australian plague locust (Chortoicetes terminifera Walker). In The evolution of insect life cycles. Edited by Taylor, F. and Karban, R.. Proceedings in life sciences. Springer-Verlag, New York. pp. 89104.CrossRefGoogle Scholar
Watanabe, M. 2006. Anhydrobiosis in invertebrates. Applied Entomology and Zoology, 41: 1531.CrossRefGoogle Scholar
Watanabe, M., Kikawada, T., Fujita, A., Forczek, E., Adati, T., and Okuda, T. 2004. Physiological traits of invertebrates entering cryptobiosis in a post-embryonic stage. European Journal of Entomology, 101: 439444.CrossRefGoogle Scholar
Watanabe, M., Kikawada, T., Fujita, A., and Okuda, T. 2005. Induction of anhydrobiosis in fat body tissue from an insect. Journal of Insect Physiology, 51: 727731.CrossRefGoogle ScholarPubMed
Weiss, S.B., and Weiss, A.D. 1998. Landscape-level phenology of a threatened butterfly: a GIS-based modeling approach. Ecosystems, 1: 299309.CrossRefGoogle Scholar
Wiesenborn, W.D. 2000. Desiccation susceptibility of the desert brachypterous thrips Arpediothrips mojave Hood (Thysanoptera: Thripidae). Pan-Pacific Entomologist, 76: 109114.Google Scholar
Wiggins, G.B., Mackay, R.J., and Smith, I.M. 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archiv für Hydrobiologie Supplement, 58: 97206.Google Scholar
Williams, D.D. 1996. Environmental constraints in temporary waters and their consequences for insect fauna. Journal of the North American Benthological Society, 15: 634650.CrossRefGoogle Scholar
Williams, D.D. 1997. Temporary ponds and their invertebrate communities. Aquatic Conservation, 7: 105117.3.0.CO;2-K>CrossRefGoogle Scholar
Williams, J.B., and Lee, R.E. Jr., 2005. Plant senescence cues entry into diapause in the gall fly Eurosta solidaginis: resulting metabolic depression is critical for water conservation. Journal of Experimental Biology, 208: 44374444.CrossRefGoogle ScholarPubMed
Williams, J.B., Ruehl, N.C., and Lee, R.E. Jr., 2004. Partial link between the seasonal acquisition of cold-tolerance and desiccation resistance in the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae). Journal of Experimental Biology, 207: 44074414.CrossRefGoogle Scholar
Wilson, P.W., Heneghan, A.F., and Haymet, A.D.J. 2003. Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation. Cryobiology, 46: 8898.CrossRefGoogle ScholarPubMed
Wipking, W., and Kurtz, J. 2000. Genetic variability in the diapause response of the burnet moth Zygaena trifolii (Lepidoptera: Zygaenidae). Journal of Insect Physiology, 46: 127134.CrossRefGoogle ScholarPubMed
Wishart, M.J., and Hughes, J.M. 2001. Exploring patterns of population subdivision in the net-winged midge, Elporia barnardi (Diptera: Blephariceridae), in mountain streams of the south-western Cape, South Africa. Freshwater Biology, 46: 479490.CrossRefGoogle Scholar
Wissinger, S., Steinmetz, J., Alexander, J.S., and Brown, W. 2004. Larval cannibalism, time constraints, and adult fitness in caddisflies that inhabit temporary wetlands. Oecologia, 138: 3947.CrossRefGoogle ScholarPubMed
Wolfe, J., Bryant, G., and Koster, K.L. 2002. What is ‘unfreezable water’, how unfreezable is it and how much is there? CryoLetters, 23: 157166.Google Scholar
Worland, M.R. 2005. Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica. Journal of Insect Physiology, 51: 881894.CrossRefGoogle ScholarPubMed
Worland, M.R., and Block, W. 2003. Desiccation stress at sub-zero temperatures in polar terrestrial arthropods. Journal of Insect Physiology, 49: 193203.CrossRefGoogle ScholarPubMed
Worland, M.R., and Convey, P. 2001. Rapid cold hardening in Antarctic microarthropods. Functional Ecology, 15: 515524.CrossRefGoogle Scholar
Yi, S.-X., and Lee, R.E. Jr., 2005. Changes in gut and Malpighian tubule transport during seasonal acclimatization and freezing in the gall fly Eurosta solidaginis. Journal of Experimental Biology, 208: 18951904.CrossRefGoogle ScholarPubMed
Yoder, J.A., Denlinger, D.L., and Wolda, H. 1992 a. Aggregation promotes water conservation during diapause in the tropical fungus beetle, Stenotarsus rotundus. Entomologia Experimentalis et Applicata, 63: 203205.CrossRefGoogle Scholar
Yoder, J.A., Denlinger, D.L., Dennis, M.W., and Kolattukudy, P.E. 1992 b. Enhancement of diapausing flesh fly puparia with additional hydrocarbons and evidence for alkane biosynthesis by a decarbonylation mechanism. Insect Biochemistry and Molecular Biology, 22: 237243.CrossRefGoogle Scholar
Yoder, J.A., Blomquist, G.J., and Denlinger, D.L. 1995. Hydrocarbon profiles from puparia of diapausing and nondiapausing flesh flies (Sarcophaga crassipalpis) reflect quantitative rather than qualitative differences. Archives of Insect Biochemistry and Physiology, 28: 377385.CrossRefGoogle Scholar
Yoder, J.A., Benoit, J.B., Denlinger, D.L., and Rivers, D.B. 2006. Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryo-protectant functions of this polyol and a role for the brain in coordinating the response. Journal of Insect Physiology, 52: 202214.CrossRefGoogle Scholar
Zachariassen, K.E. 1996. The water conserving physiological compromise of desert insects. European Journal of Entomology, 93: 359367.Google Scholar
Zachariassen, K.E., Kristiansen, E., and Pedersen, S.A. 2004 a. Inorganic ions in cold-hardiness. Cryobiology, 48: 126133.CrossRefGoogle ScholarPubMed
Zachariassen, K.E., Kristiansen, E., Pedersen, S.A., and Hammel, H.T. 2004 b. Ice nucleation in solutions and freeze-avoiding insects — homogeneous or heterogeneous? Cryobiology, 48: 309321.CrossRefGoogle ScholarPubMed
Zaslavski, V.A. 1988. Insect development, photo-periodic and temperature control. Springer-Verlag, Berlin.Google Scholar
Zaslavski, V.A. 1996. Essentials of the environmental control of insect seasonality as reference points for comparative studies in other invertebrates. Hydrobiologia, 320: 123130.CrossRefGoogle Scholar
Zera, A.J. 2005. Intermediary metabolism and life history trade-offs: lipid metabolism in lines of the wing-polymorphic cricket, Gryllus firmus, selected for flight capability vs. early age reproduction. Integrative and Comparative Biology, 45: 511524.CrossRefGoogle ScholarPubMed