Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T17:48:14.036Z Has data issue: false hasContentIssue false

ETHANOL AS THE PRIMARY ATTRACTANT FOR THE AMBROSIA BEETLE TRYPODENDRON LINEATUM (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

Henry A. Moeck
Affiliation:
Forest Products Laboratory, Department of Fisheries and Forestry, Vancouver, B.C.

Abstract

Methanol, acetaldehyde, and ethanol have been identified in extracts of attractive wood and bark. The attractancy induced by anaerobic treatment in both sapwood and phloem of conifers and broadleaf trees was characterized by ethanol as the most concentrated component. In laboratory bioassays, ethanol was attractive at low concentration to both sexes of Trypodendron lineatum (Olivier). Methanol and acetaldehyde, at the concentrations found, apparently play no role in attraction. Monoterpenes had a repellent effect on T. lineatum.

Résumé

Parmi les extraits du bois attirant le Scolyte birayé, l’auteur étudia le méthanol, l’acétaldéhyde et l’éthanol. Or c’est l’éthanol qui existait en proportion majeure dans les substances attirant le plus — par traitement anaérobie — les insectes dans l’aubier et le phloème des Conifères et feuillus. En laboratoire, l’éthanol très dilué attirait les Scolytes birayés des deux sexes, cependant que le méthanol et l’acétaldéhyde, en les concentrations trouvées, ne les attiraient pas. Les monoterpènes les repoussaient.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referenees

Binion, W. E. 1962. Attraction of the ambrosia beetle, Trypodendron, by beer dregs. proc. ent. Soc. Br. Columb. 59: 52.Google Scholar
*Blandford, W. F. H. 1893. Report on the destruction of beer casks in India. (Cited in Browne 1952.)Google Scholar
Bletchly, J. D. 1961. A review of factors affecting ambrosia beetle attack in trees and felled logs. Empire Forest. Rev. 40: 1318.Google Scholar
Borden, J. H., Brownlee, R. G., and silverstein, R. M.. 1968. Sex pheromone of Trypodendron lineatum (Coleoptera: Scolytidae): Production, bio-assay and partial isolation. Can. Ent. 100: 629636.CrossRefGoogle Scholar
Browne, F. G. 1952. Suggestions for future research in the control of ambrosia beetles. Malay. Forest. 15 197206.Google Scholar
Buchanan, W. D. 1941. Experiments with an ambrosia beetle, Xylosandrus germanus (Blfd.). J. econ. Ent. 34: 367369.CrossRefGoogle Scholar
Chapman, J. A. 1962. Field studies on attack flight and log selection by the ambrosia beetle Trypodendron lineatum (Oliv.) (Coleoptera: Scolytidae). Can. Ent. 94: 7492.CrossRefGoogle Scholar
Chapman, J. A. 1963. Field selection of different log odors by Scolytid beetles. Can. Ent. 95: 673676.CrossRefGoogle Scholar
chapman, J. A., and Kinghorn, J. M.. 1955. window flight traps for insects. can. Ent. 87: 4647.CrossRefGoogle Scholar
*Cleare, L. D. 1938. Damage caused to rum puncheons by boring beetles. Agr. J. Br. Guiana 9: 237245. (Cited in Bletchly 1961.)Google Scholar
Dyer, E. D. A. 1967. Relation of attack by ambrosia beetle [Trypodendron lineatum (Oliv.)] to felling date of spruce in central British Columbia. Bi-mon. Res. Notes Can. Dep. For. Rural Dev. 23 (2): 11.Google Scholar
Dyer, E. D. A., and Chapman, J. A. 1965. Flight and attack of the ambrosia beetle, Trypodendron lineatum (Oliv.) in relation to felling date of logs. Can. Ent. 97: 4257.CrossRefGoogle Scholar
Feigel, F. 1960. Spot tests in organic analysis. Elsevier, New york.Google Scholar
Francia, F. C., and Graham, K.. 1967. Aspects of orientation behavior in the ambrosia beetle Trypodendron lineatum (Olivier). Can. J. Zool. 45: 9851002.CrossRefGoogle ScholarPubMed
Frost, S. W., and Dietrich, H.. 1929. Coleoptera taken from bait-traps. Ann. ent. Soc. Am. 22: 427437.CrossRefGoogle Scholar
Graham, K. 1959. Release by flight exercise of a chemotropic response from photopositive domination in a Scolytid beetle. Nature 184: 283284.CrossRefGoogle Scholar
Graham, K. 1961. Air-swallowing: a mechanism in photic reversal of the beetle Trypodendron. Nature 191: 519520.CrossRefGoogle Scholar
Graham, K. 1968. Anaerobic induction of primary chemical attractancy for ambrosia beetles. Can. J. Zool. 46: 905908.CrossRefGoogle Scholar
Graham, K., and Werner, A. E.. 1956 a. Chemical aspects of log selection by ambrosia beetles. Can. Dep. Agric., For. Biol. Div., Victoria, B.C., Interim Rep. 1955–1. (Unpub.)Google Scholar
Graham, K., and Werner, A. E.. 1956 b. Chemical aspects of log selection by ambrosia beetles. Bi-mon. progr. Rep. Can. Dep. Agric., For. Biol. Div. 12(1): 34.Google Scholar
Haslam, J., and Jeffs, A. R.. 1962. Applications of gas-liquid chromatography: the examination of terpenes and related substances. Anal. 87: 658663.CrossRefGoogle Scholar
Heikkenen, H. J., and Hrutfiord, B. F.. 1965. Dendroctonus pseudotsugae: a hypothesis regarding its primary attractant. Science 150: 14571459.CrossRefGoogle ScholarPubMed
Ikeda, R. M., Simmons, D. E., and Grossman, J. D.. 1964. Removal of alcohols from complex mixtures during gas chromatography. Anal. Chem. 36: 21882189.CrossRefGoogle Scholar
Kinghorn, J. M., and Chapman, J. A.. 1959. The overwintering of the ambrosia beetle Trypodendron lineatum (Oliv.). Forest Sci. 5: 8192.Google Scholar
Mathers, W. G. 1935. Time of felling in relation to injury from ambrosia beetles, or pinworms. Br. Columb. Lumberm. 19 (8): 14.Google Scholar
Moeck, H. A. 1970. An olfactometer for the bioassay of attractants for scolytids. Can. Ent. 102: 792796.CrossRefGoogle Scholar
Nijholt, W. W., and Chapman, J. A.. 1968. A flight trap for collecting living insects. Can. Ent. 100: 11511153.CrossRefGoogle Scholar
Norris, D. M., and Baker, J. M.. 1969. Nutrition of Xyleborus ferrugineus. I: Ethanol in diets as a tunneling (feeding) stimulant. Ann. ent. Soc. Am. 62: 592594.CrossRefGoogle Scholar
Prebble, M. L., and Graham, K.. 1957. Studies of attack by ambrosia beetles in softwood logs on Vancouver Island, British Columbia. Forest Sci. 3: 90112.Google Scholar
Rudinsky, J. A. 1966. Scolytid beetles associated with Douglas-fir: response to terpenes. Science 152: 218219.CrossRefGoogle ScholarPubMed
Swan, E. P. 1966. Chemical methods of differentiating the wood of several western conifers. Forest Prod. J. 16: 5154.Google Scholar
Werner, A. E., and Graham, K.. 1957. Volatile wood constituents in relation to ambrosia beetles. Bi-mon. Progr. Rep. Can. Dep. Agric., For. Biol. Div. 13(4): 3.Google Scholar
Wood, S. L. 1957. Ambrosia beetles of the tribe Xyloterini (Coleoptera: Scolytidae) in North America. Can. Ent. 89: 337354.CrossRefGoogle Scholar
Zavarin, E. 1968. Monoterpenoids of Coniferales. Int. Ass. Wood. Anat. Bull. 1968/1: 312.Google Scholar