Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T17:44:01.625Z Has data issue: false hasContentIssue false

EVALUATION OF COMMERCIALLY PRODUCED TRICHOGRAMMA SPP. (HYMENOPTERA: TRICHOGRAMMATIDAE) FOR CONTROL OF TOMATO PINWORM, KEIFERIA LYCOPERSICELLA (LEPIDOPTERA: GELECHIIDAE), ON GREENHOUSE TOMATOES

Published online by Cambridge University Press:  31 May 2012

J.L. Shipp*
Affiliation:
Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada, N0R 1G0
K. Wang
Affiliation:
Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada, N0R 1G0
G. Ferguson
Affiliation:
Greenhouse and Processing Crops Research Centre, Ontario Ministry of Agriculture, Food and Rural Affairs, Harrow, Ontario, Canada, N0R 1G0
*
1 Author to whom all correspondence should be addressed.

Abstract

Studies were conducted to evaluate the ability of six commercially available species of Trichogramma to parasitize eggs of tomato pinworm (TPW), Keiferia lycopersicella (Walsingham), and their potential use for biological control of TPW eggs. Of the six species, Trichogramma pretiosum Riley and Trichogramma brassicae Bezdenk parasitized the most TPW eggs (40–50%). Further studies assessed the effectiveness of T. pretiosum and T. brassicae as biological control agents for TPW eggs under controlled environmental conditions which simulated conditions that could be found during the greenhouse crop production season. Trichogramma pretiosum caused significantly higher mortality of TPW eggs than did T. brassicae at all parasitoid to host egg (P:H) ratios. Mortality caused by host feeding and stinging increased significantly with increasing P:H ratios for both species. Parasitism by T. pretiosum on TPW eggs was reduced significantly and mortality caused by feeding and stinging increased significantly at 28 °C, compared with those at 20 and 25 °C. No differences were found in parasitoid-induced mortality when T. pretiosum were offered 1-, 2-, or 3-day-old TPW eggs, but parasitoid-induced mortality was reduced significantly when parasitoids were offered 4- and 5-day-old TPW eggs. Based on these trials, a P:H ratio of between 1:1 and 10:1 is recommended for inundative releases of T. pretiosum for control of TPW on greenhouse tomatoes.

Résumé

Des recherches ont été entreprises pour évaluer la capacité de six espèces commerciales de Trichogramma à parasiter les oeufs de la Mineuse de la tomate, Keiferia lycopersicella (Walsingham), et déterminer leur utilité comme agents de lutte biologique contre les oeufs de la mineuse. Parmi les six espèces, deux, T. pretiosum Riley et T. brassicae Bezdenk, ont parasité plus d’oeufs que les autres (40–50%). D’autres tests ont été mis au point pour évaluer l’efficacité de ces deux espèces comme agents biologiques de lutte contre les oeufs de la mineuse dans des conditions contrôlées simulant les conditions qui prévalent en serre durant la saison des tomates. Trichogramma pretiosum entraîne une mortalité significativement plus élevée des oeufs que T. brassicae, quel que soit le rapport parasitoïdes/oeufs de l’hôte (P : H). Une augmentation du rapport P : H pour les deux espèces de parasites augmente significativement la mortalité causée par l’alimentation ou par les piqûres chez l’hôte. Le parasitisme de T. pretiosum sur les oeufs de la mineuse diminue significativement et la mortalité due à l’alimentation et aux piqûres augmente significativement si la température est de 28 °C plutôt que de 20 ou 25 °C. Nous n’avons pas constaté de différences dans la mortalité causée par les parasitoïdes lorsque les T. pretiosum sont mis en présence d’oeufs de la mineuse de 1, 2, ou 3 jours, mais cette mortalité diminue significativement lorsque les oeufs offerts ont 4 ou 5 jours. D’après ces données, un rapport P : H entre 1 : 1 et 10 : 1 est recommandé lors de relâchements massifs de T. pretiosum pour fins de lutte biologique contre la Mineuse de la tomate en serre.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Bigler, F. 1994. Quality control on Trichogramma production. pp. 93111in Wajnberg, E., and Hassan, S.A. (Eds.), Biological control with egg parasitoids. CAB International, Biddles Ltd., Guildford and King's Lynn, Great Britain.Google Scholar
Hassan, S.A. 1989. Selection of suitable Trichogramma strains to control the codling moth Cydia pomonella and the two summer fruit tortrix moths Adoxophyes orana, Pandemis heparana (Lep.: Tortricidae). Entomophaga 34: 1927.CrossRefGoogle Scholar
Hassan, S.A. 1990. A simple method to select effective Trichogramma strains for use in biological control. pp. 201204in Wajnberg, E., and Vinson, S. B. (Eds.), Trichogramma and other egg parasitoids. INRA, Paris.Google Scholar
Hassan, S.A. 1994. Strategies to select Trichogramma species for use in biological control. pp. 5471in Wajnberg, E., and Hassan, S. A. (Eds.), Biological control with egg parasitoids. CAB International, Biddles Ltd., Guildford and King's Lynn, Great Britain.Google Scholar
Houseweart, M.W., Southard, S.G., and Jennings, D.T.. 1982. Availability and acceptability of spruce budworm eggs to parasitism by the egg parasitoid Trichogramma minutum (Hymenoptera: Trichogrammatidae). The Canadian Entomologist 114: 657666.CrossRefGoogle Scholar
Jenkins, J.W., Doane, C.C., Schuster, D.J., McLaughlin, J.R., and Jimenez, M.J.. 1990. Development and commercial application of sex pheromone for control of the tomato pinworm. pp. 269280in Ridgway, R.L., Silverstein, R.M., and Inscoe, M.N. (Eds.), Behaviour-modifying chemicals for insect management: applications of pheromones and other attractants. Marcel Dekker Inc., New York.Google Scholar
Lawson, D.S., Nyrop, J.P., and Reissig, W.H.. 1997. Assays with commercially produced Trichogramma (Hymenoptera: Trichogrammatidae) to determine suitability for obliquebanded leafroller (Lepidoptera: Tortricidae) control. Environmental Entomology 26: 684693.CrossRefGoogle Scholar
Lin, S.Y., and Trumble, J.T.. 1983. Bibliography of the tomato pinworm Keiferia lyscopersicella (Walsingham) (Lepidoptera: Gelechiidae). Bibliographies of the Entomological Society of America 1: 6574.Google Scholar
Manweiller, S.A. 1986. Developmental and ecological comparisons of Trichogramma minutum and Trichogramma platneri (Hymenoptera: Trichogrammatidae). Pan-Pacific Entomology 62: 128139.Google Scholar
Oatman, E.R. 1970. Ecological studies of the tomato pinworm on tomato in Southern California. Journal of Economic Entomology 63: 15311534.CrossRefGoogle Scholar
Pak, G.A. 1986. Behavioural variations among strains of Trichogramma spp.: a review of the literature on host-age selection. Journal of Applied Entomology 101: 5564.CrossRefGoogle Scholar
Ruberson, J.R., and Kring, T.J.. 1993. Parasitism of developing eggs by Trichogramma pretiosum (Hymenoptera: Trichogrammatidae): host age preference and suitability. Biological Control 3: 3946.CrossRefGoogle Scholar
Ruberson, J.R., Tauber, M.J., and Tauber, C.A.. 1987. Biotypes of Edovum puttleri (Hymenoptera: Eulophidae) responses to developing eggs of the Colorado potato beetle (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America 80: 451455.CrossRefGoogle Scholar
SAS Institute Inc. 1990. SAS/STAT user's guide. SAS Institute Inc., Cary, NC.Google Scholar
Schuster, D.J. 1978. Tomato pinworm: chemical control on tomato seedlings for transplant. Journal of Economic Entomology 71: 195196.CrossRefGoogle Scholar
Smith, S.M., and Strom, K.B.. 1993. Ovipositon by the forest tent caterpillar (Lepidoptera: Lasiocampidae) and acceptability of its eggs to Trichogramma minutum (Hymenoptera: Trichogrammatidae). Environmental Entomology 22: 13751382.CrossRefGoogle Scholar
Smith, S.M., Hubbes, M., and Carrow, J.R.. 1986. Factors affecting inundative releases of Trichogramma minutum Ril. against the spruce budworm. pp. 2939in Symposium on Trichogramma and Other Egg Parasites, Proceedings of the 17th International Congress of Entomology, Hamburg, Germany.Google Scholar
Strand, M.R., and Dover, B.A.. 1991. Developmental disruption of Pseudoplusia includens and Heliothis virescens larvae by the calyx fluid and venom of Miraoplitis demolitor. Archives of Insect Biochemistry and Physiology 18: 131145.CrossRefGoogle ScholarPubMed
Trumble, J.T. 1994. Sampling arthropod pests in vegetables. pp. 604621in Pedigo, L.P., and Buntin, G.D. (Eds.), Handbook of sampling methods for arthropods in agriculture. CRC Press, Boca Raton, FL.Google Scholar
Wang, K., Ferguson, G., and Shipp, J.L.. 1997. Incidence of tomato pinworn, Keiferia lycopersicela (Walsingham) (Lepidoptera: Gelechiidae) on greenhouse tomatoes in southern Ontario and its control using mating disruption. Proceedings of the Entomological Society of Ontario 128: 9398.Google Scholar
Weinberg, H.L., and Lange, W.H.. 1980. Developmental rate and lower temperature threshold of the tomato pinworm. Environmental Entomology 9: 245246.CrossRefGoogle Scholar
Yu, D.S.K., Hagley, E.A.C., and Laing, J.E.. 1984. Biology of Trichogramma minutum Riley collected from apples in southern Ontario. Environmental Entomology 13: 13241329.CrossRefGoogle Scholar