Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T13:05:51.876Z Has data issue: false hasContentIssue false

EVALUATION OF THREE TRAP DESIGNS FOR THE CAPTURE OF CONIFER-FEEDING BEETLES AND OTHER FOREST COLEOPTERA

Published online by Cambridge University Press:  31 May 2012

J.V.R. Chénier
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
B.J.R. Philogène
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Abstract

Sticky stovepipe traps, flight interception traps, and Lindgren multiple-funnel traps were baited with conifer monoterpenes and ethanol to capture conifer-feeding beetles and their associates. Of the more than 6000 beetles captured, 74.6% were caught by stovepipe traps, 14.8% by interception traps, and 10.7% by multiple-funnel traps. Dominant families were the Scolytidae (14.5% of all beetles captured), Elateridae (14.4%), Lampyridae (12.1%), Cerambycidae (12.0%), Cleridae (10.5%), Curculionidae (9.3%), Staphylinidae (4.0%), and Buprestidae (3.4%), with other families accounting for 19.8% of specimens captured. Conifer-feeding species in the families Buprestidae, Melandryidae, Cerambycidae, Scolytidae, and Curculionidae and their predators (Cleridae) were captured in greatest numbers by the sticky stovepipe traps; the interception traps generally captured the fewest specimens. The sticky stovepipe traps may be superior because they offer a distinct vertical silhouette to approaching insects.

Résumé

Des pièges collants à tuyaux de poêle, des pièges à interception et des pièges à entonnoirs multiples Lindgren furent appâtés avec des monoterpènes de conifères et de l’éthanol afin de capturer les coléoptères inféodés aux conifères ainsi que les autres coléoptères qui leurs sont associés. Plus de 6000 coléoptères furent pris, avec 74,6% des spécimens capturés par les pièges à tuyaux, 14,8% par les pièges à interception et 10,7% par les pièges à entonnoirs. Les familles dominantes étaient les Scolytidae (14,5% des coléoptères capturés), Elateridae (14,4%), Lampyridae (12,1%), Cerambycidae (12,0%), Cleridae (10,5%), Curculionidae (9,3%), Staphylinidae (4,0%) et Buprestidae (3,4%), les autres familles comptant pour 19,8% des captures. Les espèces de Buprestidae, Melandryidae, Cerambycidae, Scolytidae et Curculionidae inféodées aux conifères, ainsi que leurs prédateurs (Cleridae) furent pris en plus grand nombre dans les pièges à tuyaux, et en plus petit nombre dans les pièges à interception. La performance supérieure des pièges à tuyaux semble attribuable à la silhouette verticale nette qu’ils offrent aux insectes qui s’en approchent.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakke, A., and Saether, T.. 1978. Granbarkbillen kan fanges i rørfeller. Skogeieren 65(11): 10.Google Scholar
Bedard, W.D., and Browne, L.E.. 1969. A delivery-trapping system for evaluating insect chemical attractants in nature. J. econ. Ent. 62: 12021203.CrossRefGoogle Scholar
Billings, R.F., and Cameron, R.S.. 1984. Kairomonal responses of Coleoptera, Monochamus titillator (Cerambycidae), Thanasimus dubius (Cleridae), and Temnochila virescens (Trogositidae), to behavioral chemicals of southern pine bark beetles (Coleoptera: Scolytidae). Environ. Ent. 13: 15421548.CrossRefGoogle Scholar
Borden, J.H., King, C.J., Lindgren, B.S., Chong, L., Gray, D.R., Oehlschlager, A.C., Slessor, K.N., and Pierce, H.D. Jr., 1982. Variations in response of Trypodendron lineatum from two continents to semiochemicals and trap form. Environ. Ent. 11: 403408.CrossRefGoogle Scholar
Borden, J.H., Pierce, A.M., Pierce, H.D. Jr., Chong, L.J., Stock, A.J., and Oehlschlager, A.C.. 1987. Semiochemicals produced by western balsam bark beetle, Dryocetes confusus Swaine (Coleoptera: Scolytidae). J. chem. Ecol. 13: 823836.CrossRefGoogle Scholar
Browne, L.E. 1978. A trapping system for the western pine beetle using attractive pheromones. J. chem. Ecol. 4: 261275.CrossRefGoogle Scholar
Chapman, J.A., and Kinghorn, J.M.. 1955. Window flight traps for insects. Can. Ent. 87: 4647.CrossRefGoogle Scholar
Chapman, J.A., and Kinghorn, J.M.. 1958. Studies of flight and attack activity of the ambrosia beetle, Trypodendron lineatum (Oliv.), and other scolytids. Can. Ent. 90: 362372.CrossRefGoogle Scholar
Chénier, J.V.R., and Philogène, B.J.R.. 1989. Field responses of certain forest Coleoptera to conifer monoterpenes and ethanol. J. chem. Ecol. In press.Google Scholar
Fatzinger, C.W. 1985. Attraction of the black turpentine beetle (Coleoptera: Scolytidae) and other forest Coleoptera to turpentine-baited traps. Environ. Ent. 14: 768775.CrossRefGoogle Scholar
Gardiner, L.M. 1975. Insect attack and value loss in wind-damaged spruce and jack pine stands in northern Ontario. Can. J. For. Res. 5: 387398.CrossRefGoogle Scholar
Hines, J.W., and Heikkenen, H.J.. 1977. Beetles attracted to severed Virginia pine (Pinus virginiana Mill.). Environ. Ent. 6: 123127.CrossRefGoogle Scholar
Ikeda, T., Enda, N., Yamane, A., Oda, K., and Toyoda, T.. 1980. Attractants for the Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae). Appl. Ent. Zool. 15: 358361.CrossRefGoogle Scholar
Kerck, K. 1972. Äthylalkohol und Stammkontur als Komponenten der Primäranlockung bei Xyloterus domesticus L. (Col.: Scolytidae). Naturwissenschaften 59: 423.CrossRefGoogle Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). Can. Ent. 115: 299302.CrossRefGoogle Scholar
Lindgren, B.S., Borden, J.H., Chong, L., Friskie, L.M., and Orr, D.B.. 1983. Factors influencing the efficiency of pheromone-baited traps for three species of ambrosia beetles (Coleoptera: Scolytidae). Can. Ent. 115: 303313.CrossRefGoogle Scholar
McLean, J.A., Bakke, A., and Niemeyer, H.. 1987. An evaluation of three traps and two lures for the ambrosia beetle Trypodendron lineatum (Oliv.) (Coleoptera: Scolytidae) in Canada, Norway, and West Germany. Can. Ent. 119: 273280.CrossRefGoogle Scholar
McLean, J.A., and Borden, J.H.. 1979. An operational pheromone-based suppression program for an ambrosia beetle, Gnathotrichus sulcatus, in a commercial sawmill. J. econ. Ent. 72: 165172.CrossRefGoogle Scholar
Moeck, H.A., Wood, D.L., and Lindahl, K.Q. Jr., 1981. Host selection behavior of bark beetles (Coleoptera: Scolytidae) attacking Pinus ponderosa, with special emphasis on the western pine beetle, Dendroctonus brevicomis. J. chem. Ecol. 7: 4983.CrossRefGoogle Scholar
Montgomery, M.E., and Wargo, P.M.. 1983. Ethanol and other host-derived volatiles as attractants to beetles that bore into hardwoods. J. chem. Ecol. 9: 181190.CrossRefGoogle ScholarPubMed
Moser, J.C., and Browne, L.E.. 1978. A nondestructive trap for Dendroctonus frontalis Zimmerman (Coleoptera: Scolytidae). J. chem. Ecol. 4: 17.CrossRefGoogle Scholar
Niemeyer, H. 1985. Field response of Ips typographus L. (Col., Scolytidae) to different trap structures and white versus black flight barriers. Z. ang. Ent. 99: 4451.CrossRefGoogle Scholar
Niemeyer, H., Schröder, T., and Watzek, G.. 1983. Eine neue Lockstoff-Falle zur Bekämpfung von rinden- und holzbrütenden Borkenkäfern. Forst- zu. Holzwirt 38: 105112.Google Scholar
Niemeyer, H., and Watzek, G.. 1977. Lockstoff-Fallen: Versuche zur Bekämpfung des Buchdruckers (Ips typographus) ohne Fangbäume und Insektizide. Allg. Forstzt. 32: 10091010.Google Scholar
Payne, T.L., Dickens, J.C., and Richerson, J.V.. 1984. Insect predator–prey coevolution via enantiomeric specificity in a kairomone-pheromone system. J. chem. Ecol. 10: 487492.CrossRefGoogle Scholar
Rowe, J.S. 1972. Forest Regions of Canada. Can. For. Serv. Publ. 1300. 172 pp.Google Scholar
Siegfried, B.D. 1987. In-flight responses of the pales weevil, Hylobius pales (Coleoptera: Curculionidae) to monoterpene constituents of southern pine gum turpentine. Florida Ent. 70: 97102.CrossRefGoogle Scholar
Solomon, J.D., Doolittle, R.E., and Spilman, T.J.. 1976. Cerambycid beetles captured in sticky-traps in Mississippi. Coleopterists' Bull. 30: 289290.Google Scholar
Southwood, T.R.E. 1978. Ecological Methods. Chapman and Hall, London. 524 pp.Google Scholar
Vité, J.P., and Bakke, A.. 1979. Synergism between chemical and physical stimuli in host colonization by an ambrosia beetle. Naturwissenschaften 66: 528529.CrossRefGoogle Scholar
Wickman, B.E. 1965. Insect-caused deterioration of windthrown timber in northern California, 1963–1964. U.S.D.A. For. Serv. Res. Paper PSW-20. 14 pp.Google Scholar
Wilkening, A.J., Foltz, J.L., Atkinson, T.H., and Connor, M.D.. 1981. An omnidirectional flight trap for ascending and descending insects. Can. Ent. 113: 453455.CrossRefGoogle Scholar
Younan, E.G., and Hain, F.P.. 1982. Evaluation of five trap designs for sampling insects associated with severed pines. Can. Ent. 114: 789796.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ. 718 pp.Google Scholar