Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T06:08:14.025Z Has data issue: false hasContentIssue false

EVOLUTION OF THE HIND WING IN COLEOPTERA

Published online by Cambridge University Press:  31 May 2012

Jarmila Kukalová-Peck
Affiliation:
Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada K1S 5B6
John F. Lawrence
Affiliation:
CSIRO Division of Entomology, GPO Box 1700, Canberra, ACT 2601, Australia

Abstract

A survey is made of the major features of the venation, articulation, and folding in the hind wings of Coleoptera. The documentation is based upon examination of 108 Coleoptera families and 200 specimens, and shown in 101 published figures. Wing veins and articular sclerites are homologized with elements of the neopteran wing groundplan, resulting in wing vein terminology that differs substantially from that generally used by coleopterists. We tabulate the differences between currently used venational nomenclature and the all-pterygote homologous symbols. The use of the neopteran groundplan, combined with the knowledge of the way in which veins evolved, provides many strong characters linked to the early evolutionary radiation of Coleoptera. The order originated with the development of the apical folding of the hind wings under the elytra executed by the radial and medial loop. The loops, which are very complex venational structures, further diversified in four distinctly different ways which mark the highest (suborder) taxa. The remaining venation and the wing articulation have changed with the loops, which formed additional synapomorphies and autapomorphies at the suborder, superfamily, and sometimes even family and tribe levels. Relationships among the four currently recognized suborders of Coleoptera are reexamined using hind wing characters. The number of wing-related apomorphies are 16 in Coleoptera, seven in Archostemata + Adephaga–Myxophaga, four in Adephaga–Myxophaga, seven in Myxophaga, nine in Archostemata, and five in Polyphaga. The following phylogenetic scheme is suggested: Polyphaga [Archostemata (Adephaga + Myxophaga)]. Venational evidence is given to define two major lineages (the hydrophiloid and the eucinetoid) within the suborder Polyphaga. The unique apical wing folding mechanism of beetles is described. Derived types of wing folding are discussed, based mainly on a survey of recent literature. A sister group relationship between Coleoptera and Strepsiptera is supported by hind wing evidence.

Résumé

On trouvera ici les résultats d’une synthèse des principales caractéristiques reliées à la nervation, à l’articulation et au repliement des ailes postérieures chez les Coléoptères. Ce travail repose sur l’étude de 200 spécimens appartenant à 108 familles de Coléoptères et sur l’examen de 101 illustrations tirées de la littérature. Les nervures alaires et les sclérites articulaires sont homologués à des éléments du plan de base de l’aile néoptère, ce qui donne lieu à une terminologie relativement différente de celle qu’utilisent généralement les spécialistes des Coléoptères. Nous présentons ici un tableau qui compare les termes généralement employés pour désigner les nervures et les symboles homologues de l’aile type d’un ptérygote. L’utilisation du plan de base de l’aile néoptère, ajouté à nos connaissances de l’évolution des nervures, jettent de la lumière sur les caractères fondamentaux reliés à la radiation évolutive primitive des Coléoptères. L’ordre s’est d’abord distingué par le repliement apical de l’aile postérieure sous l’élytre, le long des boucles radiale et médiale. Les boucles, qui sont des structures nervulaires très complexes, se sont par la suite diversifiées de quatre façon différentes qui caractérisent les taxons les plus évolués (sous-ordres). Les autres nervures et l’articulation de l’aile se sont modifiés en fonction des boucles, ce qui a donné lieu à d’autres synapomorphies et autapomorphies au niveau du sous-ordre et de la super-famille et même parfois au niveau de la famille et de la tribu. Les relations entre les quatre sous-ordres actuellement reconnus de Coléoptères ont été réévaluées en fonction des caractéristiques de l’aile postérieure. Le nombre d’apomorphies reliées à l’aile sont au nombre de 16 chez les Coléoptères, de sept chez les Archostémates + Adéphages–Myxophages, de quatre chez les Adéphages–Myxophages, de sept chez les Myxophages, de neuf chez les Archostémates et de cinq chez les Polyphages. Le modèle phylogénétique suivant est proposé : Polyphages [Archostémates (Adéphages + Myxophages)]. Des caractéristiques de la nervation permettent de définir deux lignées principales (les hydrophiloïdes et les eucinétoïdes) au sein du sous-ordre des Polyphages. Le mécanisme de repliement apical particulier de l’aile chez les Coléoptères est décrit. Les types dérivés de repliement de l’aile sont examinés à la lumière de la littérature récente. Les caractéristiques de l’aile postérieure nous permettent de croire que les Coléoptères et les Strepsiptères représentent deux groupes soeurs.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolph, G.E. 1879. Über Insektenflügel. Nova Acta Leopoldiana Carolinae 41: 215291.Google Scholar
Arnold, J.W. 1963. A note on the pterostigma in insects. The Canadian Entomologist 95(1): 1316.Google Scholar
Arnoldi, L.V., Zherikhin, V.V., Nikritkin, L.M., and A.G. Ponomarenko. 1977. Mesozoic beetles. Trudy Paleontologicheskogo Instituta 161: 1204. [In Russian.]Google Scholar
Balfour-Browne, W.A.F. 1944. The wing venation of the Adephaga (Coleoptera) with special reference to the Hydradephaga and some homologies with the Polyphaga. Journal of the Royal Microscopical Society 63: 5564.Google Scholar
Blum, P. 1979. Zur Phylogenie und ökologischen Bedeutung der Elytrenreduktion und Abdomenweglichkeit der Staphyliniden (Coleoptera): vergleichend- und funktionsmorphologische Untersuchungen. Zoologisches Jahrbuch (Anatomie) 102(4): 533582.Google Scholar
Böving, A.G., and Craighead, F.C.. 1931. An illustrated synopsis of the principal larval forms of the Coleoptera. Entomologica Americana (n.s.) 11: 1351.Google Scholar
Browne, D.J. 1991. Wing structure of the genus Eucanthus Westwood; confirmation of the primitive nature of the genus (Scarabaeoidea: Geotrupidae: Bolboceratinae). Journal of the Entomological Society of South Africa 54(2): 221230.Google Scholar
Comstock, J.H. 1918. The Wings of Insects. Comstock, Ithaca, NY. pp. 1430.Google Scholar
Comstock, J.H., and Needham, J.G.. 1898. The wings of insects (part). American Naturalist 32: 43–48, 81–89, 231–257, 335–340, 413–424, 561–565, 769–777, 903911.Google Scholar
Comstock, J.H., and Needham, J.G.. 1899. The wings of insects (part). American Naturalist 33: 117–126, 573–582, 845860.Google Scholar
Crowson, R.A. 1955. The Natural Classification of the Families of Coleoptera. Nathanial Lloyd, London. 214 pp.Google Scholar
Crowson, R.A. 1960. The phylogeny of Coleoptera. Annual Review of Entomology 5: 111134.Google Scholar
Crowson, R.A. 1981. The Biology of Coleoptera. Academic Press, London.Google Scholar
Forbes, W.T.M. 1922. The wing-venation of the Coleoptera. Annals of the Entomological Society of America 15: 328345, pls. XXIX–XXXV.Google Scholar
Forbes, W.T.M. 1926. The wing-folding patterns of the Coleoptera. Journal of the New York Entomological Society 34: 42–68, 91139.Google Scholar
Graham, S.A. 1922. A study of the wing-venation of the Coleoptera. Annals of the Entomological Society of America 15: 191200.Google Scholar
Hamilton, K.G.A. 1972. The insect wing, part III. Venation of the orders. Journal of the Kansas Entomological Society 45: 145162.Google Scholar
Hammond, P.M. 1979. Wing-folding mechanisms of beetles, with special reference to investigations of Adephagan phylogeny. pp. 113180in Erwin, T.L., Ball, G.E., Whitehead, D.R. and Halpern, A.L. (Eds.), Carabid Beetles: Their Evolution, Natural History, and Classification. W. Junk, The Hague.Google Scholar
Hennig, W.W. 1981. Insect Phylogeny (transl. A.C. Pont; rev. notes D. Schlee). Wiley, New York, NY. 514 pp.Google Scholar
Jeannel, R., and Paulian, R.. 1944. Morphologie abdominale des Coléoptéres et systématique de l'ordre. Revue Française d'Entomologie 11: 65110.Google Scholar
Kaufmann, T. 1960. Faltungsmechanismen der Flügel bei einigen Coleopteren. Ludwig-Maximilians-Universität, Münich. 73 pp.Google Scholar
Kinzelbach, R. 1971. Morphologische Befunde an Fächerflügern und ihre phylogenetische Bedeutung (Insecta: Strepsiptera). Zoologica 41(119): 1256.Google Scholar
Kolbe, H. 1901. Vergleichend morphologische Untersuchungen an Koleopteren nebst Grundlagen zu einem System und zur Systematik derselben. Archive der Naturgeschichte 1901: 98–112, 128141.Google Scholar
Kolbe, H. 1908. Mein System der Coleopteren. Zeitschrift für wissenschaftlichen Insekten-Biologie 13: 116–123, 153–162, 219–226, 246–251, 286–294, 389400.Google Scholar
Kühne, O. 1914. Der Tracheenverlauf im Flügel der Koleopterennymphe. Zeitschrift für wissenschaftliche Zoologie 112: 691718, pls. 19–20.Google Scholar
Kukalová, J. 1969. On the systematic position of the supposed Permian beetles, Tshekardocoleidae, with a description of a new collection from Moravia. Sborník geologických Věd. (P)11: 139162.Google Scholar
Kukalová-Peck, J. 1978. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. Journal of Morphology 156: 53126.Google Scholar
Kukalová-Peck, J. 1983. Origin of the insect wing and wing articulation from the arthropodan leg. Canadian Journal of Zoology 61(7): 16181669.Google Scholar
Kukalová-Peck, J. 1991. Fossil history and the evolution of hexapod structures. pp. 141–179 in C.S.I.R.O., (Ed.), Insects of Australia, 2nd ed. Volume I. Melbourne University Press, Melbourne.Google Scholar
Kukalová-Peck, J., and Brauckmann, C.. 1992. Most Paleozoic Protorthoptera are ancestral hemipteroids; major wing braces as clues to a new phylogeny of Neoptera (Insecta). Canadian Journal of Zoology 70: 24522473.Google Scholar
Lameere, A. 1922. Sur la nervation alaire des insectes. Bulletin de l'Academie Royale de Belgique. Classe Scientifique 1922: 38149. [English transl., 1923, Psyche, Cambridge 30: 123–132.]Google Scholar
Larsén, O. 1966. On the morphology and function of the locomotor organs of the Gyrinidae and other Coleoptera. Opuscula Entomologica Supplementum 30: 1242.Google Scholar
Lawrence, J.F., and Britton, E.B.. 1991. Coleoptera. pp. 543683in C.S.I.R.O., (Ed.), Insects of Australia, 2nd ed. Volume 2. Melbourne University Press, Melbourne.Google Scholar
Lawrence, J.F., and Newton, A.F. Jr., 1982. Evolution and classification of beetles. Annual Review of Ecology and Systematics 13: 261290.Google Scholar
Lawrence, J.F., Nielsen, E.S., and Mackerras, I.M.. 1991. Skeletal anatomy and key to orders. pp. 332in C.S.I.R.O. (Ed.), Insects of Australia, 2nd ed. Volume 1. Melbourne University Press, Melbourne.Google Scholar
Leschen, R.A.B., and Lawrence, J.F.. 1991. Fern sporophagy in Coleoptera from the Juan Fernandez Islands, Chile, with descriptions of two new genera in Cryptophagidae and Mycetophagidae. Systematic Entomology 16: 329352.Google Scholar
d'Orchymont, A. 1920. La nervation alaire des Coléoptères. Annales de la Société Entomologique de France 89: 150, pls. 1–3.Google Scholar
d'Orchymont, A. 1921. Aperçu de la nervation alaire des Coléoptères. Annales de la Société Entomologique de la Belgique 61: 256278.Google Scholar
Ponomarenko, A.G. 1969. Historical development of the Coleoptera–Archostemata. Trudy Paleontologicheskogo Instituta 125: 1240. [In Russian.]Google Scholar
Ponomarenko, A.G. 1972. On the nomenclature of the wing-venation in Coleoptera. Entomologicheskoe Obozrenie 51(4): 768775. [In Russian; translation in Entomological Review, Washington 51(4): 454–458.Google Scholar
Redtenbacher, J. 1886. Vergleichende Studien über das Flügelgeäder der Insekten. Annalen des kaiserlichen-königlichen naturwissenschaftlichen Hofmuseums 1: 153232.Google Scholar
Riek, E.F. 1955. The Australian rhipidiine parasites of cockroaches (Coleoptera: Rhipiphoridae). Australian Journal of Zoologie 3: 7194.Google Scholar
Schneider, P. 1978. Die Flug- und Faltungstypen der Käfer (Coleoptera). Zoologisches Jahrbuch der Anatomie 99: 174210.Google Scholar
Shear, W.A., and Kukalová-Peck, J.. 1990. The ecology of Paleozoic terrestrial arthropods: The fossil evidence. Canadian Journal of Zoology 68: 18071834.Google Scholar
Snodgrass, R.E. 1909. The thorax of insects and articulation of the wings. Proceedings of the United States National Museum 36: 511595, pls. 40–69.Google Scholar
Snodgrass, R.E. 1935. Principles of Insect Morphology. McGraw-Hill, New York, NY.Google Scholar
Wallace, F.L., and Fox, R.C.. 1975. A comparative morphological study of the hind wing venation of the order Coleoptera, part I. Proceedings of the Entomological Society of Washington 77: 329354.Google Scholar
Wallace, F.L., and Fox, R.C.. 1980. A comparative morphological study of the hind wing venation of the order Coleoptera, part II. Proceedings of the Entomological Society of Washington 82: 609654.Google Scholar
Whitten, J.M. 1962. Homology and development of insect wing tracheae. Annals of the Entomological Society of America 55: 288295.Google Scholar
Wootton, R.J. 1981. Support and deformability in insect wings. Journal of Zoology, London 193: 447468.Google Scholar